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Chapter 2 e
The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group Ko(R) of a ring R.

We give in Section 2.2 three equivalent definitions of Ky(R), namely, by
the universal additive invariant for finitely generated projective modules, by the
Grothendieck construction applied to the abelian monoid of isomorphism classes
of finitely generated projective modules, and by idempotent matrices, and discuss
the significance of K((R) for the category of finitely generated projective modules.
Some calculations for principal ideal domains and Dedekind rings are provided in
Section 2.3.

We explain the connections to geometry. We prove Swan’s Theorem 2.27, which
identifies Ko(C%(X)) for the ring C°(X) of continuous functions on a compact
space X with the Grothendieck group of the abelian monoid of isomorphism classes
of vector bundles over X, see (2.31). The relevance of Ko(ZG) for topologists is
illustrated by Wall’s finiteness obstruction, which also leads to a geometric descrip-
tion of Ko(ZG) in terms of finitely dominated spaces and is discussed in detail in
Section 2.5.

We introduce variants of the K-theoretic Farrell-Jones Conjecture for projective
class groups in Section 2.8. A prototype asserts that for a torsionfree group G and a
regular ring R, e.g., R = Z or R a field, the change of rings map

Ko(R) = Ko(RG)

is bijective. It implies the conjecture that for a torsionfree group G the reduced
projective class group Ko(ZG) vanishes, which is for finitely presented G equivalent
to the conjecture that every finitely dominated CW-complex with 7;(X) = G is
homotopy equivalent to a finite CW-complex. We also introduce a version where the
group is not necessarily torsionfree, but R is a regular ring with Q C R or a field of
prime characteristic.

In Section 2.9 we consider Kaplansky’s Idempotent Conjecture, which asserts for
a torsionfree group G and a field F that O and 1 are the only idempotents in FG.
It is a consequence of the Farrell-Jones Conjecture. We also discuss various Bass
Conjectures, all of which are implied by the Farrell-Jones Conjecture, in Section 2.10.

Finally, we give a survey of Ko(ZG) for finite groups G and of Ko(C(G)) in
Section 2.12 and of Ko(N(G)) in Section 2.13, where C;:(G) is the reduced group
C*-algebra and N (G) the group von Neumann algebra.
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30 2 The Projective Class Group

2.2 Definition and Basic Properties of the Projective Class Group

Definition 2.1 (Projective class group Ky(R)). Let R be an (associative) ring
(with unit). Define its projective class group Kyg(R) to be the abelian group
whose generators are isomorphism classes [P] of finitely generated projective
R-modules P and whose relations are [Pg] + [P»] = [P;] for any exact sequence
0 — Py — Py — P, — 0 of finitely generated projective R-modules.

Define Gy (R) analogously but replacing finitely generated projective by finitely
generated.

Given a ring homomorphism f: R — §, we can assign to an R-module M an
S-module f.M by S ®g M where we consider S as a right R-module using f. We say
that f. M is obtained by induction with f from M. If M is finitely generated or free
or projective, the same is true for f, M. This construction is natural, compatible with
direct sums, and sends an exact sequence 0 — Py — P; — P, — 0 of finitely gener-
ated projective R-modules to an exact sequence 0 — f.Py — f.P1 — f.P» — 0of
finitely generated projective S-modules. Hence we get a homomorphism of abelian
groups

2.2) fe = Ko(f): Ko(R) — Ko(S), [P] = [f.P],

which is also called the change of rings homomorphism. Thus K becomes a covariant
functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group). One should
view Kp(R) together with the assignment sending a finitely generated projec-
tive R-module P to its class [P] in Ko(R) as the universal additive invariant
or the universal dimension function for finitely generated projective R-modules.
Namely, suppose that we are given an abelian group and an assignment d that as-
sociates to a finitely generated projective R-module an element d(P) € A such that
d(Pg) + d(P2) = d(Py) holds for any exact sequence 0 — Py — P} — P, — 0
of finitely generated projective R-modules. Then there is precisely one homomor-
phism of abelian groups ¢: Ko(R) — A such that ¢([P]) = d(P) holds for every
finitely generated projective R-module P. The analogous statement holds for Go(R)
if we consider finitely generated R-modules instead of finitely generated projective
R-modules.

A ring is an integral domain if every zero-divisor is trivial, i.e., if r, s € R satisfy
rs = 0,thenr = 0 or s = 0. A principal ideal domain is a commutative integral
domain for which every ideal is a principal ideal, i.e., of the form (r) = {r’'r | ¥’ € R}
for some r € R.

Example 2.4 (Ky(R) and G(R) of a principal ideal domain). Let R be a principal
ideal domain. Then we get isomorphisms of abelian groups
Z 5 Ko(R), ne [R'];
Ko(R) = Go(R), [P~ [P].
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This follows from the structure theorem of finitely generated R-modules over princi-
pal ideal domains. It implies that any finitely generated R-module M can be written
as a direct sum R" @ T for some torsion R-module T for which there exists an exact
sequence of R-modules of the shape 0 — R®* — R®* — T — 0. Moreover, M is
projective if and only if 7 is trivial and we have R = R" &= m = n.

Definition 2.5 (Reduced projective class group K((R)). Define the reduced pro-
jective class group Ko(R) to be the quotient of Ky(R) by the abelian subgroup
{[R™] = [R"] | n,m € Z,m,n > 0}, which is the same as the abelian subgroup
generated by the class [R].

We conclude from Example 2.4 that the reduced projective class group Ko(R) is
isomorphic to the cokernel of the homomorphism

fe: Ko(Z) — Ko(R)

where f is the unique ring homomorphismZ — R, n+— n - 1g.

Remark 2.6 (The projective class group as a Grothendieck group). Let Proj(R)
be the abelian semigroup of isomorphisms classes of finitely generated projective
R-modules with the addition coming from the direct sum. Let K| (R) be the associated
abelian group given by the Grothendieck construction applied to Proj(R). There is a
natural homomorphism

¢: K)(R) = Ko(R)

sending the class of a finitely generated projective R-module P in K{(R) to its class
in Ko(R). This is a well-defined isomorphism of abelian groups.

The analogous definition of G{(R) and the construction of a homomorphism
G((R) — Go(R) makes sense, but the latter map is not bijective in general. It works
for Ko(R) because every exact sequence of projective R-modules 0 — Py — P} —
P> — 0 splits and thus yields an isomorphism P; = Py @ P;. In general K-theory
deals with exact sequences, not with direct sums. Therefore Definition 2.1 of Ky (R)
reflects better the underlying idea of K-theory than its definition in terms of the
Grothendieck construction.

Exercise 2.7. Prove that the homomorphism ¢: Kj(R) — Ko(R) appearing in
Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group measure?). Let P be
a finitely generated projective R-module. Then we conclude from Remark 2.6 that
its class [P] € Ko(R) is trivial if and only if P is stably finitely generated free, i.e.,
P ® R" = R’ for appropriate integers r, s > 0. So the reduced projective class group
Ko(R) measures the deviation of a finitely generated projective R-module from being
stably finitely generated free. Note that, in general, stably finitely generated free does
not imply finitely generated free, as Examples 2.9 and 2.28 will show.

Example 2.9 (Dunwoody’s example). An interesting ZG-module P that is sta-
bly finitely generated free but not finitely generated free is constructed by Dun-
woody [317] for G the torsionfree one-relator group (a, b | a*> = b%), which is the
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fundamental group of the trefoil knot. Note that EO(ZG) is known to be trivial, in
other words, every finitely generated projective RG-module is stably finitely gener-
ated free. It is also worth mentioning that ZG contains no idempotent besides 0 and
1. Hence any direct summand in ZG is free.

More examples of this kind are given in Berridge-Dunwoody [134].

One basic feature of algebraic K-theory is Morita equivalence.

Theorem 2.10 (Morita equivalence for Ky(R)). For every ring R and integer
n > 1, there is a natural isomorphism

p: Ko(R) = Ko(M,(R)).

Proof. We can consider R" as an M,, (R)-R-bimodule, denoted by w1, (r)R" r. Then
u sends [P] to [m,r)R"r ®r P]. We can also consider R" as an R-M,(R)-
bimodule denoted by grR"m, (r). Define v: Ko(M,(R)) — Ko(R) by sending [Q]
to [RR"Mm, (R) ®M, (r) @]. Then u and v are inverse to one another. a

Exercise 2.11. Check that ¢ and v are inverse to one another.

We omit the easy proof of the next lemma.

Lemma 2.12. Let Ry and Ry be rings. Denote by pr;: Ry X Ry — R; fori =0, 1 the
projection. Then we obtain an isomorphism

(pro)« X (pry)«: Ko(Ro X R1) — Ko(Ro) x Ko(R1).

Example 2.13 (Rings with non-trivial K (R)). We conclude from Example 2.4 and
Lemma 2.12 that for a principal ideal domain R we have

Ko(RXR)=Ze&Z
Ko(RXR) = Z.

The R x R-module R x {0} is finitely generated projective but not stably finitely
generated free. It is a generator of the infinite cyclic group Ko(R X R).

Notation 2.14 (M(R), GL(R), and Idem(R)). Let M,,,,(R) be the set of (m,n)-
matrices over R. For A € M, ,(R), let r4: R™ — R", x — xA be the
R-homomorphism of (left) R-modules given by right multiplication by A. Let
M,,(R) be the ring of (n,n)-matrices over R. Denote by GL, (R) the group of
invertible (n, n)-matrices over R. Let Idem,, (R) be the subset of M,,(R) of idem-
potent matrices A, i.e., (n, n)-matrices satisfying A> = A. There are embeddings
irn: Mp(R) > Mu41(R), A — g(t) fort = 0,1 and n > 1. The embedding
i1, induces an embedding GL,(R) — GL,+;(R) of groups. Let GL(R) be the
union of the GL,,(R)-s, which is a group again. Denote by M(R) the union of the
M,, (R)-s with respect to the embeddings i¢. This is a ring without unit. Let Idem(R)
be the set of idempotent elements in M (R). This is the same as the union of the
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Idem,, (R)-s with respect to the embeddings Idem,,(R) — Idem,,; | (R) coming from
the embeddings ip ,: M, (R) = M,+1(R).

Remark 2.15 (The projective class groups in terms of idempotent matrices). The
projective class groups Ko(R) can also be defined in terms of idempotent matrices.
Namely, the conjugation action of GL,(R) on M,,(R) induces an action of GL(R)
on M(R) which leaves Idem(R) fixed. One obtains a bijection of sets

¢: GL(R)\Idem(R) — Proj(R), [A]+> im(ra: R" — R").

This becomes a bijection of abelian semigroups if we equip the source with the

addition coming from (A, B) — and the target with the one coming from

A0
0B
the direct sum. So we can identify K, (R) with the Grothendieck group associated to
the abelian semigroup GL(R)\ Idem(R) by Remark 2.6.

Exercise 2.16. Show that the map ¢ appearing in Remark 2.15 is a well-defined
isomorphism of abelian semigroups.

Example 2.17 (A ring R with trivial Ky(R)). Let F be a field and let V be an
F-vector space with an infinite countable basis. Consider the ring R = endp (V).
Next we prove that Ky(R) is trivial.

By Remark 2.15 it suffices to show for every integer n > 0 and two idempotent
matrices A, B € Idem,,(R) that the matrices A®0@® 1 and B&0® 1 in M,,4»(R)
are conjugate by an element in GL,,4»(R). This follows from the observations that
both the kernel and the image of the F-linear endomorphisms 7 sg0s1 and 7 pgoe1 Of
V"2 have infinite countable dimension, two F-vector spaces of infinite countable
dimension are isomorphic, and the inclusions induce isomorphisms ker(rsgos1) ®

im(rA@()@l) i) Vn+2’ and ker(}"Be;()e;l) D im(rBGB()@l) i> Vn+2.

Lemma 2.18. Let G be a group. Let R be a commutative integral domain with
quotient field F. Then we obtain an isomorphism

Ko(RG) = Ko(RG) ®Z, [P] — ([P],dimp(F ®rg P))

where F is considered as an RG-module with respect to the trivial G-action and the
inclusion of rings j: R — F.

Proof. Since F ®gg P is a finite-dimensional F-vector space for finitely generated
Pand F ®rg (P ® Q) =g (F ®rg P) ® (F ®rg Q), this is a well-defined homo-
morphism. Bijectivity follows from dimg (F ®gg RG") = n. O



34 2 The Projective Class Group

2.3 The Projective Class Group of a Dedekind Domain

Let R be a commutative integral domain with quotient field F. A non-zero
R-submodule I C F is called a fractional ideal if for some » € R we have rI C R.
A fractional ideal [ is called principal if I is of the form {% | r e R} for some
a,b € Rwitha,b #0.

Definition 2.19 (Dedekind domain). A commutative integral domain R is called a
Dedekind ring if for any fractional ideal / there exists another fractional ideal J with
1J =R.

Note that in Definition 2.19 the fractional ideal J must be given by {x € F |
x-1CR}.

The fractional ideals in a Dedekind ring form by definition a group under multi-
plication of ideals with R as unit. The principal fractional ideals form a subgroup.
The class group C(R) is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [727, Corollary 11 on
page 14] and [860, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class group of
Dedekind domains). Let R be a Dedekind domain. Then every fractional ideal
is a finitely generated projective R-module and we obtain an isomorphism of abelian
groups

Z&C(R) = Ko(R), (n,[1]) = n-[R] +[I] - [R].

In particular, we get an isomorphism
C(R) = Ko(R), [1] = [1].

A ring is called hereditary if every ideal is projective, or, equivalently, if ev-
ery submodule of a projective R-module is projective, see [215, Theorem 5.4 in
Chapter 1.5 on page 14].

Theorem 2.21 (Characterization of Dedekind domains). The following assertions
are equivalent for a commutative integral domain with quotient field F:

(1) R is a Dedekind domain;
(ii) For every pair of ideals I C J of R, there exists an ideal K C R with I = JK;
(iii) R is hereditary;
(iv) Every finitely generated torsionfree R-module is projective;
(V) R is Noetherian and integrally closed in its quotient field F and every non-zero
prime ideal is maximal.

Proof. This follows from [271, Proposition 4.3 on page 76 and Proposition 4.6 on
page 77] and the fact that a finitely generated torsionfree module over an integral
domain R can be embedded into R" for some integer n > 0. See also [57, Chapter 13].

O
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Remark 2.22 (The class group in terms of ideals of R). One calls two ideals 7 and
J in R equivalent if there exist non-zero elements r and s in R with r/ = sJ. Then
C(R) is the same as the equivalence classes of ideals under multiplication of ideals
and the class given by the principal ideals as unit. Two ideals 7 and J of R define the
same element in C(R) if and only if they are isomorphic as R-modules, see [860,
Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of Q and the
ring of integers in F is the integral closure of Z in F.

Theorem 2.23 (The class group of a ring of integers is finite). Let R be the ring
of integers in an algebraic number field. Then R is a Dedekind domain and its class
group C(R) and hence its reduced projective class group Ko(R) are finite.

Proof. See [860, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23]. O

Remark 2.24 (Class group of Z[exp(2ri/p)]). Let p be a prime number. The ring
of integers in the algebraic number field Q[exp(27i/p)] is Z[exp(27i/p)]. Its class
group C(Z[exp(2ni/p)]) is finite by Theorem 2.23. However, its structure as a finite
abelian group is only known for finitely many small primes, see [727, Remark 3.4
on page 30] or [990, Tables §3 on page 352ff].

Example 2.25 (Ko(Z[V=5])). The reduced projective class group Ko(Z[V=5]) of
the Dedekind domain Z[V=5] is cyclic of order two. A generator is given by the
maximal ideal (3,2 + \/—_5) in Z[\/—_S]. (For more details see [860, Exercise 1.4.20
on page 25]).

2.4 Swan’s Theorem

Let F be the field R or C. Let X be a compact space. Denote by C(X, F) or briefly
by C(X) the ring of continuous functions from X to F. Let £ and n be (finite-
dimensional locally trivial) F-vector bundles over X. Denote by C(¢) the F-vector
space of continuous sections of £. This becomes a C(X)-module under pointwise
multiplication. If F denotes the trivial 1-dimensional vector bundle X X F — X,
then C(F) and C(X) are isomorphic as C(X)-modules. If ¢ and n are isomorphic
as F-vector bundles, then C(¢) and C(n) are isomorphic as C(X)-modules. There
is an obvious isomorphism of C(X)-modules

(2.26) CE@Cn > Céen).

Since X is compact, every F-vector bundle has a finite bundle atlas and admits
a Riemannian metric. This implies the existence of an F-vector bundle &’ such
that & @ ¢’ is isomorphic as an F-vector bundle to a trivial F-vector bundle F".
Hence C(¢) is a finitely generated projective C(X)-module. Denote by hom(¢, r7)
the C(X)-module of morphisms of F-vector bundles from £ to 7, i.e., of continuous
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maps between the total spaces that commutes with the bundle projections to X and
induce linear (not necessarily injective or bijective) maps between the fibers over x
for all x € X. This becomes a C(X)-module under pointwise multiplication. Such
a morphism f: & — p induces a C(X)-homomorphism C(f): C(¢) — C(n) by
composition. The next result is due to Swan [939].

Theorem 2.27 (Swan’s Theorem). Let X be a compact space and F = R, C. Then:

(1) Let ¢ and 1 be F-vector bundles. Then we obtain an isomorphism of C(X)-
modules

['(¢,n): hom(&,7) — home(x)(C(£),C(n), [+ C(f);

(ii) We have ¢ = n < C(€) =cx) C(n);
(iii) If P is a finitely generated projective C (X )-module, then there exists an F-vector
bundle & satisfying C(§) =c(x) P.

Proof. (i) Obviously I'(¢ @ £’,7n7) can be identified with I'(£,n) & I'(¢',n) and
I'(¢,n @ n’) can be identified with I'(¢,n7) ®T'(£, ") under the identification (2.26).
Since a direct sum of two maps is a bijection if and only if each of the maps is a
bijection and for every & there is an &’ such that & @ ¢’ is trivial, it suffices to treat
the case where ¢ = F™ and = F" for appropriate integers m,n > 0. There is an
obvious commutative diagram

hom(F™, F" HERED h C(F™),C(F"
om(F™, F"") —————— homc x)(C(F™),C(F"))

M,y,,n(hom(E, F)) M (C(E)).

My n (T(ELE))

Hence it suffices to treat the claim for m = n = 1, which is obvious.

(ii) This follows from assertion (i).

(iii) Given a finitely generated projective C(X)-module P, choose a C(X)-map
p: C(X)" — C(X)" satisfying p> = p andim(p) =c(x) P.Because of assertion (ii)
we can choose a morphism of F-vector bundles g: F" — F" with I'(F", F")(q) =
p. We conclude g*> = g from p? = p and the injectivity of I'(F”", F"*). Elementary
bundle theory shows that the image of ¢ and the image of 1 — g are F-subvector
bundles in F" satisfying im(q)®im(1-g) = F". One easily checks C(im(q)) =c(x)
P. O

One may summarize Theorem 2.27 by saying that we obtain an equivalence
of C(X)-additive categories from the category of F-vector bundles over X to the
category of finitely generated projective C(X)-modules by sending & to C(&).
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Example 2.28 (C(7'S™)). Consider the n-dimensional sphere S". Let TS" be its
tangent bundle. Then C(7'S") is a finitely generated projective C(S™)-module. It is
free if and only if 7'S™ is trivial. This is equivalent to the condition that n = 1,3, 7,
see [155]. On the other hand C(T'S™) is always stably finitely generated free as a
C(8™)-module, since T'S" is stably finitely generated free as an F-vector bundle
because the direct sum of 7™ and the normal bundle v(8", R"*!) of the standard
embedding " C R"! is TR"*!|gx and both F-vector bundles v(S", R"*!) and
TR™!|gn are trivial.

Exercise 2.29. Consider an integer n > 1. Show that there exists a C(S")-module
M with C(TS") =¢(sn) C(S") ®@ M if and only if $" admits a nowhere vanishing
vector field. (This is equivalent to requiring that y (S™) = 0, or, equivalently, that n
is odd.)

Remark 2.30 (Topological K-theory in dimension 0). Let X be a compact space.
Let Vectr(X) be the abelian semigroup of isomorphism classes of F-vector bun-
dles over X where the addition comes from the Whitney sum. Let K°(X) be the
abelian group obtained from the Grothendieck construction to it. It is called the 0-th
topological K-group of X. If f: X — Y is a map of compact spaces, the pullback
construction yields a homomorphism K°(f): K°(Y) — K°(X). Thus we obtain a
contravariant functor K° from the category of compact spaces to the category of
abelian groups. Since the pullback of a vector bundle with two homotopic maps
yields isomorphic vector bundles, K°( f) depends only on the homotopy class of
f. Actually there is a sequence of such homotopy invariant covariant functors K"
for n € Z that constitutes a generalized cohomology theory K* called topological
K-theory. 1t is 2-periodic if F = C, i.e., there are natural so-called Bott isomor-
phisms K"(X) — K"*2(X) forn € Z.If F = R, itis 8-periodic. We will give further
explanations and generalizations of topological K-theory later in Section 10.2
Swan’s Theorem 2.27 yields an identification

(2.31) K'(X) = Ko(C(X)) [£] = [CY(O)].

Exercise 2.32. Let f: X — Y be a map of compact spaces. Composition with f
yields a ring homomorphism C(f): C(Y) — C(X). Show that under the identifica-
tion (2.31) the maps K°(f): K°(Y) — K°(X) and C(f).: Ko(C(Y)) = Ko(C(X))
coincide.

Exercise 2.33. Compute Ky(C(D"™)) for the n-dimensional disk D" for n > 0.

2.5 Wall’s Finiteness Obstruction

We now discuss the geometric relevance of Ko (2G).

Let X be a CW-complex. It is called finite if it consists of finitely many cells.
This is equivalent to the condition that X is compact. We call X finitely dominated
if there exists a finite domination (Y,i,r), i.e., a finite CW-complex Y together with
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mapsi: X — Yandr: Y — X such that r oi is homotopic to the identity on X. If X
is finitely dominated, its set of path components 7o (X) is finite and the fundamental
group 71 (C) of each component C of X is finitely presented, see Lemma 2.42.

While studying existence problems for compact manifolds with prescribed proper-
ties (like for example the existence of certain group actions), it happens occasionally
that it is relatively easy to construct a finitely dominated CW-complex with the de-
sired property within a given homotopy type, whereas it is not at all clear whether one
can also find a homotopy equivalent finite CW-complex. If the goal is to construct
a compact manifold, this is a necessary step in the construction. Wall’s finiteness
obstruction, which we will explain below, decides this question.

An example of such a geometric problem is the Spherical Space Form Prob-
lem 9.205, i.e., the classification of closed manifolds M whose universal coverings
are diffeomorphic or homeomorphic to the standard sphere. Such examples arise
as unit spheres in unitary representations of finite groups, but there are also ex-
amples that do not occur in this way. This problem initiated not only the theory
of the finiteness obstruction, but also surgery theory for closed manifolds with
non-trivial fundamental group. We refer to the survey articles [284] and [694] for
more information about the Spherical Space Form problem. It was finally solved by
Madsen-Thomas-Wall [701, 702].

The finiteness obstruction also appears in the Ph.D.-thesis [915] of Siebenmann,
who dealt with the problem whether a given smooth or topological manifold can be
realized as the interior of a compact manifold with boundary.

Next we explain the definition and the main properties of the finiteness obstruction,
illustrating that it is a kind of Euler characteristic, but now counting elements in the
projective class group instead of counting ranks of finitely generated free modules.

2.5.1 Chain Complex Version of the Finiteness Obstruction

Definition 2.34 (Types of chain complexes). We call an R-chain complex finitely
generated, free, or projective respectively if each R-chain module is finitely gen-
erated, free, or projective. It is called positive if C,, = 0 for n < —1. It is called
finite-dimensional if there exists a natural number N such that C,, = O for |n| < N. It
is called finite if it is finite-dimensional and finitely generated.

For the remainder of this section all chain complexes C., are understood to be pos-
itive. Let R be a ring and C, be an R-chain complex. A finite domination (F., i, p«)
of C, consists of a finite free R-chain complex F, and R-chain mapsi.: C. — F, and
ry: F, — C, such that r, o i, = id¢, holds. The existence of a finite domination is
equivalent to the existence of a finite projective R-chain complex P, which is R-chain
homotopy equivalence to C.. For a proof of this claim we refer for instance to [644,
Proposition 11.11 on page 222], or to the explicit construction in Subsection 23.7.5.
For any such choice of P,, define the finiteness obstruction o(C.) € Ko(R) to be
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(2.35) 0(C.) = D (=) - [P].

n>0

The reduced finiteness obstruction o(C.) € Ko(R) is the image of o(C,) under
the projection Ko(R) — Ko(R). The definition is indeed independent of the choice
of P,, since for two finite projective R-chain complexes P, and Q. coming with

an R-chain homotopy equivalence f.: P. 5 Q.. the mapping cone cone,(f), see
Definition 3.29, is contractible and hence we obtain an R-isomorphism

Podd @ Qev i’ Pev ® Qodd
from the isomorphism (3.30) and its inverse (3.31).

Lemma 2.36. (i) If the two R-chain complexes C,. and D, are R-chain homotopy
equivalent and one of them is finitely dominated, then both are finitely dominated
and we get

0(C.) = o(D.);

(ii) Let 0 —» C. — D, — E. — 0 be an exact sequence of R-chain complexes. If
two of the R-chain complexes C., D., and E. are finitely dominated, then all
three are finitely dominated and we get

o(D,) =0(C,) +0o(E.);

(iii) Let C. be a finitely dominated R-chain complex. Then it is R-chain homotopy
equivalent to a finite free R-chain complex if and only if 0(C,) vanishes.

Proof. (i) This follows directly from the definitions.
(i1) One can construct a commutative diagram of R-chain complexes

0 fol D’ E! 0
0 C. D, E, 0

such that the rows are exact, the upper row consists of finite projective R-chain
complexes, and the vertical maps are R-chain homotopy equivalences, see for in-
stance [644, Lemma 11.6 on page 216].

(iii) Suppose that 0(C,) = 0. Choose a finite projective R-chain complex P, which
is R-chain homotopy equivalent to C,. An elementary R-chain complex E. over
an R-module M is an R-chain complex which is concentrated in two consecutive
dimensions and its only non-trivial differential is given by idy; : M — M. By adding
elementary R-chain complexes over finitely generated free R-modules, one can ar-
range that P, is of the shape --- - 0 —» P, — P,_; — --- — Pg such that P;
is finitely generated free for i < n — 1. Since o(C,) = (=1)" - [P,] = 0 holds in
Ko(R), the R-module P,, is stably free. Hence, by adding one further elementary
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chain complex over a finitely generated free R-module, one can arrange that P, is
finite free. O

2.5.2 Space Version of the Finiteness Obstruction

In the sequel we ignore base point questions. This is not a real problem since an
inner automorphism of a group G induces the identity on Ko(RG).

Given a finitely dominated connected CW-complex X with fundamental group 7,
we consider its universal covering X and the associated cellular Zz-chain complex
C.(X). Given a finite domination (Y, i, r), we regard the -covering Y over Y asso-
ciated to the epimorphism r..: 71 (¥) — m1(X). The pullback construction yields a
n-covering i*Y over X. Then F, = C.(i*Y) is a finite free Zz-chain complex. The
maps i and r yield Zx-chain maps r..: F, — C, (X) and i,: C, (X) — F, such that
rs o I, is Zm-chain homotopic to the identity on C, (X). Thus (F,,i.,r.) is a finite
domination of the Zx-chain complex C, (X). We have defined o(C,.(X)) € Ko(Zn)
in (2.35). Now define the unreduced finiteness obstruction

(2.37) o(X) = 0(C.(X)) € Ko(Zn).
Define the finiteness obstruction
(2.38) o(X) € Ko(Zn)

to be the image of o(X) under the canonical projection Ky(Zr) — Ko(Zn). Obvi-
ously o(X) = 0if X is homotopy equivalent to a finite CW-complex Z since in this
case we can take P, = C,(Z) and C,(Z) is a finite free Zz-chain complex. The next
result is due to Wall, see [983] and [984].

Theorem 2.39 (Properties of the Finiteness Obstruction). Let X be a finitely
dominated connected CW-complex.

(1) The space X is homotopy equivalent to a finite CW-complex if and only if 0(X)
vanishes;

(ii) Every element in Ko(ZG) can be realized as the finiteness obstruction o(X) of
a finitely dominated connected 3-dimensional CW-complex X with G = m1(X),
provided that G is finitely presented.

Theorem 2.39 illustrates why it is important to study the algebraic object Ko(Zn)
when one is dealing with geometric or topological questions. The favorite case is
when Eg (Zr) vanishes because then the finiteness obstruction is obviously zero and
one does not have to make a specific computation of o(X) in Ko(Zn).

Exercise 2.40. Let X be a finitely dominated connected CW-complex with funda-
mental group 7. Define a homomorphism of abelian groups

¥:Ko(Zr) = Z, [P] — dimg(Q®z, P).
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Show that ¢ sends o(X) to the Euler characteristic y (X).

Remark 2.41. One can extend the finiteness obstruction also to not necessarily
connected CW-complexes. If X is a (not necessarily connected) finitely dominated
CW-complex, we define

KoZlm (X)) = P Ko(Zlmi(O)]):
Cenmy(X)

Ko@Zlm (X)) = P Ko(Zlmi(O)),
CEﬂ'o(X)

and the unreduced finite obstruction and the finiteness obstruction to be

0(X) :={o(C) | C e mo(X)} € Ko(Z[71(X)]);
3(X) := {0(C) | C € mo(X)} € Ko(Z[m1(X))).

Note that Ko(Z[7(X)]) and Ko (Z[ 7 (X)]) are covariant functors in X in the obvious
way.

For more information about the finiteness obstruction we refer for instance to [380,
382, 642, 669, 740, 743, 761, 838, 965, 983, 984].

2.5.3 Outline of the Proof of the Obstruction Property

In this subsection we outline the proof of Theorem 2.39.
The elementary proofs of the next two lemmas can be found in [983, Lemma 1.3]
and [644, Lemma 14.8 on page 280].

Lemma 2.42. Let G be a finitely presented group. Leti: H — G andr: G — H be
group homomorphisms with r o i = idy. Then H is finitely presented.

Lemma 2.43. Let G be a finitely generated group and H be a finitely presented
group. Then the kernel ker(f) of any group epimorphism f: G — H is finitely
generated as a normal subgroup, i.e., there exists a finite subset S of ker(f) such
that the intersection of all normal subgroups of G containing S is ker(f).

The next Lemma 2.44 follows from Lemma 2.42 and Lemma 2.43.

Lemma 2.44. Let (Y, i, r) be a finite domination of the CW-complex X. Then we can
arrange by attaching finitely many 2-cells to Y that the map 7, (r): n1(Y) — n1(X)
is bijective and hence r is 2-connected.

Lemma 2.45. Let Y be a finitely dominated connected CW-complex whose finiteness
obstruction o(Y) vanishes. Then there are:

(i) A finite 2-dimensional connected CW-complex Z;
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(ii) A 2-connected map h: Z — Y; _
(iii) A finite free Zr-chain complex C. with C.|y = C«(Z) and a Zr-chain homotopy
equivalence f,: C. — C.(Y) with f.|» = C.(h), where here and in the sequel we

identify m = n1(Z) with m\(Y) using the isomorphism nti(h): n1(Z) 5 a1 (Y).

Proof. By Lemma 2.44 we obtain a finite domination (Y,i,r) such thatr: ¥ — X is
2-connected. Take Z to be the 2-skeleton Y, of Y and 4: Z — X to be the restriction
ofrto Z.

Since h is 2-connected, the induced Zn-chain map C. (h): C.(Z) — C.(Y) is
2-connected and hence H,,(cone.(C.(h))) = 0 for n < 2. Let P, be the Zx-subchain
complex of cone, (C,(h)) given by

JEER cone4(C*(Z)) =, cone3(C*(E)) =, ker(c;) > 0—-0—0
where c, is the differential of cone(C. (E)) Because of the exact sequence
0 — ker(c2) — cones(Cy(h)) 2, cone; (C.(h)) iR coney(C,(h)) — 0

the Zn-chain complex P, is projective. The inclusion i,: P, — cone,(C, (ﬁ)) is
a homology equivalence of projective Zr-chain complexes and hence a Zmr-chain
homotopy equivalence. Put Q, = £73P,. Then Q, is a positive projective Zr-chain
complex such that 230, is Zn-chain homotopy equivalent to cone. (C. (h)).

The mapping cylinder cyl(C.(h)), see Definition 3.29, is Zz-chain homotopy
equivalent to C*(Y) and there is an obvious short exact sequence of Zr-chain com-
plexes _ _ _

0 — C.(Z) - cyl,(Ci(h)) — cone(C.(h)) — 0.

Since C.(Z) is finite free and C,(Y) is finitely dominated, we conclude from
Lemma 2.36 (i) and (ii) that Q. is finitely dominated and that we get in Ky(Zn)

5(Q.) = —5(P.) = —o(cone.(C.(h))) = 3(cyl,(C.(h))) - 5(C.(Z))
=0(C.(Y)) - 0(C.(Z2)) =0-0=0.

Lemma 2.36 (iii) implies that Q. is Zn-chain homotopy equivalent to a finite
free positive Zr-chain complex F.. Choose a Zr-chain homotopy equivalence
g.: Z3F, — cone,(C,(h)). We get a commutative diagram of Zz-chain complexes
with exact rows and Zn-chain homotopy equivalences as vertical arrows

0 C.(Z) C. Y3F, 0

A

0 C.(2) cyl, (C.(h)) — cone, (C,(h)) —= 0
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by requiring that the right square is a pull back. Now define the desired Zz-chain map
fi: C« = C.(Y) to be the composite of g with the canonical Zr-chain homotopy
equivalence cyl, (C.(h)) — C.(Y). O

Next we present the main tool to pass from chain complexes to CW-complexes.
Its proof can be found in [984, Theorem 2] or in the more general equivariant setting
in [644, Theorem 13.19 on page 268].

Theorem 2.46 (Realization Theorem). Let h: Z — Y be a map between connected
CW-complexes such that wy(h): n1(Z) — 7 (Y) is an isomorphism. In the sequel
we identify m = n(Y) with n{(Z) using n;(h). Put d = dim(Z) and suppose
2 < d < oo. Assume the existence of a free Zn-chain complex C, with a preferred
Zr-basis and a Zn-chain homotopy equivalence f.: C. — Ci, (17 ) such that the
restriction C.|q to dimensions 0, 1, . .., d agrees with C.(Z) and f.|a = C.(h).

Then we can construct a CW-complex X such that its d-skeleton X, agrees with
Z and a cellular homotopy equivalence g: X — Z satisfying under the obvious
identification 1 = m(X) = 11 (Y) = n1(Z):

(1) We have g|z = h;
(ii) There is a Zn-chain isomorphism u,: C — C*()? ) such that the given Zn-basis

on C, is mapped bijectively to the cellular Zr-basis of X;
(iii) We have C.(g) o u. = f..

Remark 2.47. Note that there is no absolute version of the Realization Theorem 2.46
in the sense that, for a d-dimensional CW-complex Z with fundamental group 7 and
dimension d > 2 and a based free Zx-chain complex C, with C.|; = C. (Z), we can
find a CW-complex X with X; = Z and C*()? ) = C.. Moreover, the assumption
dim(Z) > 2 cannot be dropped in the Realization Theorem 2.46.

Lemma 2.48. Let X be a connected CW-complex. Then it is finitely dominated if
and only if m1(X) is finitely presented and the Z|n1(X)]-chain complex C.(X) is
finitely dominated.

Proof. This follows essentially from Theorem 2.46; details of the proof can be
found in [984, Corollary 5.1] or in the more general equivariant setting in [644,
Proposition 14.6 (a) on page 282]. O

Next we can give the proof of Theorem 2.39.

Proof of Theorem 2.39. (i) If the finitely dominated connected CW-complex Y is
homotopy equivalent to a finite CW-complex, we get o(Y) = 0 directly from the
definitions. Now suppose that Y is a finitely dominated connected CW-complex with
o(Y) = 0. We conclude from Lemma 2.45 and Theorem 2.46 that ¥ is homotopy
equivalent to a CW-complex X for which its cellular Zr-chain complex C.(X) is
finite free. The latter implies that X is finite.
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(ii). Since G is finitely presented, we can choose a connected finite 2-dimensional
CW-complex Z with m1(Z) = G. Consider any element ¢ € Ko(Zr). Choose a
finitely generated projective R-module P and a natural number n such that & =
[P] - [Z7"] holds. Choose an exact sequence 0 — (P, Zr 5 @, Zr—P—0.
Now consider X' = X V V; ¢/ S2. For each i3 € I3 we attach a 3-cell to X’ with an
attaching map ¢;,: S> — X’ such that [g;,] € m2(X’) corresponds to the image of
the basis element in P 1, L7 associated to i3 under the composite

where j sends the basis element associated to i € I, to the element in 75 (X’)
given by the obvious inclusion of S> — X’ associated to i,. Call the resulting
3-dimensional CW-complex Y. Note that we can identify 7 with 711 (Y). We obtain
an exact sequence of free Zx-chain complexes

0— Ci(X) » C.(Y) > C.(Y,X) > 0.

The Zn-chain complex C, (17 X ) is concentrated in dimensions 2 and 3 and its third
differential is u. This implies that C,(Y, X) is Zn-chain homotopy equivalent to the
Zm-chain complex concentrated in dimension 2 with P as second Znr-chain module.
Hence C,(Y, X) is finitely dominated and o(C,(Y, X)) = [P] by Lemma 2.36 (i).
Lemma 2.36 (ii) implies that C, (Y)is finitely dominated. Then Y is finitely dominated
as a CW-complex by Lemma 2.48. Lemma 2.36 (ii) implies that we get for some
integer m

0(C.(Y)) = 0(Co(2)) + 0(Co(Y, X)) = m - [Zr] + [P].

By attaching to Y finitely many trivial 2 and 3-cells, we can arrange that Y is a finitely
dominated connected CW-complex with 7;(Y) = G and o(Y) = [P] — [Za"] =

é. O
Exercise 2.49. Let
X() L> Xl

153 . Ji
Jo

X —X
J2
be a cellular pushout, i.e., the diagram is a pushout, the map i; is an inclusion
of CW-complexes, the map i; is cellular and X carries the induced CW-structure.
Suppose that Xy, X, X, are finitely dominated.
Then X is finitely dominated and we get in Ko(Z[7((X)])

o(X) = (ji):(o(X1)) + (j2)«(0(X2)) = (jo)«(0(X1)).
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2.6 Geometric Interpretation of Projective Class Group and
Finiteness Obstruction

Next we give a geometric construction of Ko (Zr) that is in the spirit of the well-
known interpretation of the Whitehead group in terms of deformation retractions,
which we will present later in Section 3.4. The material of this section is taken
from [642], where more information and details of the proofs can be found.

Given a space Y, we want to define an abelian group Wa(Y). The underlying set
is the set of equivalence classes of an equivalence relation ~ defined on the set of
maps f: X — Y with finitely dominated CW-complexes as source and the given
space Y as target. We call fy: Xo — Y and f3: X4 — Y equivalent if there exists a
commutative diagram

io J J3 is

Xo X X X3 Xy

f

S

fo fa

N
i

such that j; and j3 are homotopy equivalences and iy and i4 are inclusions of CW-
complexes with the property that the larger one is obtained from the smaller one by
attaching finitely many cells. Obviously this relation is symmetric and reflexive. It
needs some work to show transitivity and hence that it is an equivalence relation.
The addition in Wa(Y) is given by the disjoint sum, i.e., define the sum of the class
of fo: Xo —» Y and f1: X; — Y tobe the class of fo [ fi: Xo I X1 — Y. Itiseasy
to check that this is compatible with the equivalence relation. The neutral element is
represented by 0 — Y. The inverse of the class [ f] of f: X — Y is constructed as
follows. Choose a finite domination (Z, i, r) of X. Construct a map F: cyl(i) —» X
from the mapping cylinder of i to Y such that F|x = idx and F|z = r. Then an
inverse of [ f] is given by the class [ f'] of the composite

FUidXF f
I7eyl(@) Ux eyl(i) —— X > Y.
This finishes the definition of the abelian group Wa(Y). A map f: Yy — Y} induces
a homomorphism of abelian groups Wa(f): Wa(Yy) — Wa(Y;) by composition.
Thus Wa defines a functor from the category of spaces to the category of abelian
groups.

Exercise 2.50. Show that [ f] + [f’] = 0 holds for the composite f’ above.

Given a finitely dominated CW-complex X, define its geometric finiteness ob-
SIrUCtion 04e0(X) € Wa(X) by the class of idy.
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Theorem 2.51 (The geometric finiteness obstruction). Let X be a finitely domi-
nated CW-complex. Then X is homotopy equivalent to a finite CW-complex if and
only if 0geo(X) = 0 in Wa(X).

Proof. Obviously 04, (X) = 0 if X is homotopy equivalent to a finite CW-complex.
Suppose 0geo(X) = 0. Hence there are a CW-complex ¥, amap r: ¥ — X and a
homotopy equivalence h: Y — Z to a finite CW-complex Z such that Y is obtained
from X by attaching finitely many cells and r o i = idx holds for the inclusion
i: X — Y. The mapping cylinder cyl(r) is built from the mapping cylinder cyl(7)
by attaching a finite number of cells and is homotopy equivalent to X. Choose a
homotopy equivalence g: cyl(i) — Z. Consider the push-out

cyl(i) LI cyl(r)

Z—,>Z’

where i is the inclusion. Since g is a homotopy equivalence, the same is true for g’.
Hence X is homotopy equivalent to the finite CW-complex Z’. O

Theorem 2.52 (Identifying the finiteness obstruction with its geometric coun-
terpart). Let Y be a space. Then there is a natural isomorphism of abelian groups

©: Wa(Y) > P Ko(Zmi(0)).
Cem(Y)

Proof. We only explain the definition of ®. Consider an element [f] € Wa(Y)
represented by a map f: X — Y from a finitely dominated CW-complex X to Y.
Given a path component C of X, let Cr be the path component of ¥ containing f(C).
The map f induces amap f|c: C — Cy and hence a map (f|c)«: Ko(Zm1(C)) —
Ko(Zmi (C r)). Since X is finitely dominated, every path component C of X is finitely
dominated, and we can consider its finiteness obstruction 5(C) € Ko(Zn(C)). Let
#([f])c be the image of 0(C) under the composite
Ro(zm () <5 Ro(@m(Cp) - D Ko(zm(C).
Cemny(Y)

Since mo(X) is finite, we can define

(V)

CEH()(X)

We omit the easy proof that this is compatible with the equivalence relation appearing
in the definition of Wa(Y), that ¢ is a homomorphism of abelian groups and that
Theorem 2.39 implies that @ is bijective. O
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2.7 Universal Functorial Additive Invariants

In this section we describe the pair (Ko (Zr1(X)), 0(X)) by an abstract property.

Definition 2.53 (Functorial additive invariant for finitely dominated CW-comp-
lexes). A functorial additive invariant for finitely dominated CW-complexes consists
of a covariant functor A from the category of finitely dominated CW-complexes to
the category of abelian groups together with an assignment a that associates to every
finitely dominated CW-complex X an element a(X) € A(X) such that the following
axioms are satisfied:

e Homotopy invariance of A
If f,g: X — Y are homotopic maps between finitely dominated CW-complexes,
then A(f) = A(g);
e Homotopy invariance of a(X)
If f: X — Y is a homotopy equivalence of finitely dominated CW-complexes,
then A(f)(a(X)) = a(Y);
o Additivity
Let
Xo—— X,

i2 . Ji
Jo

X2 T)
be a cellular pushout, i.e., the diagram is a pushout, the map #; is an inclusion
of CW-complexes, the map i, is cellular and X carries the induced CW-structure.
Suppose that Xy, X, X» are finitely dominated.
Then X is finitely dominated and

a(X) = A(jD)(a(X1)) + A(j2)(a(X2)) = A(jo)(a(X0));

e Normalization
a(0) = 0.

Example 2.54 (Componentwise Euler characteristic). Let A be the covariant func-
tor sending a finitely dominated CW-complex X to Ho(X;Z) = P, no(x) L Let
a(X) € A(X) be the componentwise Euler characteristic, i.e., the collection of inte-
gers {x(C) | C € mp(X)}. Then (A, a) is a functorial additive invariant for finitely
dominated CW-complexes.

Definition 2.55 (Universal functorial additive invariant for finitely dominated
CW-complexes). A universal functorial additive invariant for finitely dominated
CW-complexes (U,u) is a functorial additive invariant with the property that for
any functorial additive invariant (A, a) there is precisely one natural transformation
T: U — A with the property that T(X)(#(X)) = a(X) holds for every finitely
dominated CW-complex X.
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Exercise 2.56. Show that the functorial additive invariant defined in Example 2.54
is the universal one if we restrict to finite CW-complexes.

Obviously the universal additive functorial invariant is unique (up to unique
natural equivalence) if it exists. It is also easy to construct it. However, it turns out
that there exists a concrete model, namely, the following theorem is proved in [642,
Theorem 4.1].

Theorem 2.57 (The finiteness obstruction is the universal functorial additive
invariant). The covariant functor X +— B Ceny(x) Ko (Zr1(C)) together with the
componentwise finiteness obstruction {o(C) | C € no(X)} is the universal functorial
additive invariant for finitely dominated CW-complexes.

Exercise 2.58. (i) Construct for finitely dominated CW-complexes X and Y a natural
bilinear pairing
P(X,Y): UX)xUY) > U(XxY)

sending (u(X),u(Y)) tou(XxY) where (U, u) is the universal functorial additive
invariant for finitely dominated CW-complexes;

(ii) Let X be a finitely dominated CW-complex. Let Y be a finite CW-complex such
that y(C) = O for every component C of Y. Show that X x Y is homotopy
equivalent to a finite CW-complex.

2.8 Variants of the Farrell-Jones Conjecture for Ky (RG)

In this section we state variants of the Farrell-Jones Conjecture for Ko(RG), where
RG, sometimes also written as R[G ], is the group ring of a group G with coefficients
in an associative ring R with unit. Elements in RG are given by formal finite sums
2igeG g - &> and addition and multiplication is given by

5o

geG geG geG
(ng.g).(zsg.g) :=Z( 5 )g
geG geG geG \h,keG,

g=hk

The Farrell-Jones Conjecture itself will give a complete answer for arbitrary
groups and rings, but to formulate the full version some additional effort will be
needed. If one assumes that R is regular and G is torsionfree or that R is regular and
Q C R, then the conjecture reduces to easy to formulate statements, which we will
present next. Moreover, these special cases are already very interesting.

Definition 2.59 (Projective resolution). Let M be an R-module. A projective reso-
lution (P, ¢) of M is a positive projective R-chain complex P, with H, (P,) = 0 for

n > 1 together with an R-isomorphism ¢: Hy(P,) = M. Ttis called finite, finitely
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generated, free, finite-dimensional, or d-dimensional if the R-chain complex P, has
this property.

A ring R is Noetherian if any submodule of a finitely generated R-module is
again finitely generated. A ring R is called regular if it is Noetherian and any finitely
generated R-module has a finite-dimensional projective resolution. Any principal
ideal domain such as Z, any field, and, more generally, any Dedekind domain is
regular, see Theorem 2.21.

Conjecture 2.60 (Farrell-Jones Conjecture for Ky(R) for torsionfree G and reg-
ular R). Let G be a torsionfree group and let R be a regular ring. Then the map
induced by the inclusion of the trivial group into G

Ko(R) = Ko(RG)

is bijective.
In particular we get for any principal ideal domain R and torsionfree G

Ko(RG) = 0.

Remark 2.61 (Relevance of Conjecture 2.60). In view of Remark 2.8 Conjec-
ture 2.60 is equivalent to the statement that for a torsionfree group G and a regular
ring R every finitely generated projective RG-module is stably finitely generated
free. This is the algebraic relevance of this conjecture. Its geometric meaning comes
from the following conclusion of Theorem 2.39. Namely, if R = Z and G is a finitely
presented torsionfree group, it is equivalent to the statement that every finitely domi-
nated CW-complex with 71 (X) = G is homotopy equivalent to a finite CW-complex.

Definition 2.62 (Family of subgroups). A family F of subgroups of a group G is
a set of subgroups that is closed under conjugation with elements of G and under
passing to subgroups.

Our main examples of families are listed below

Notation 2.63.

notation|subgroups

TR trivial group

FCY |finite cyclic subgroups
FIN |finite subgroups

CYC |cyclic subgroups

VCY |virtually cyclic subgroups
ALL |all subgroups

Definition 2.64 (Orbit category). The orbit category Or(G) has as objects homo-
geneous spaces G/H and as morphisms G-maps. Given a family ¥ of subgroups
of G, let the F-restricted orbit category Or#(G) be the full subcategory of Or(G)
whose objects are homogeneous spaces G/H with H € F.
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Definition 2.65 (Subgroup category). The subgroup category Sub(G) has as ob-
jects subgroups H of G. For H, K C G, let conhomg (H, K) be the set of all group
homomorphisms f: H — K for which there exists a group element g € G such that
f is given by conjugation with g. The group of inner automorphisms inn(K) consists
of those automorphisms K — K that are given by conjugation with an element
k € K. It acts on conhom(H, K) from the left by composition. Define the set of
morphisms in Sub(G) from H to K to be inn(K)\ conhom(H, K). Composition of
group homomorphisms defines the composition of morphisms in Sub(G).

Given a family 7, define the ¥ -restricted category of subgroups Sub#(G) to be
the full subcategory of Sub(G) that is given by objects H belonging to ¥ .

Exercise 2.66. Show that Sub#(G) is a quotient category of Or#(G).

Note that there is a morphism from H to K only if H is conjugate to a subgroup of
K. Clearly Ko(R(-)) yields a functor from Sub#(G) to abelian groups since inner
automorphisms on a group K induce the identity on Ko(RK). Using the inclusions
into G, one obtains a map

COlimHESub;t(G) K()(RH) i Ko(RG).

We briefly recall the notion of a colimit of a covariant functor F: C — Z-MOD
from a small category C into the category of abelian groups, where small means
that the objects of C form a set. Given an abelian group A, let C4 be the constant
functor C — Z-MOD that sends every object in C to A and every morphism in C
to id4. Given a homomorphism f: A — B of abelian groups, let Cy: C4 — Cp be
the obvious transformation. The colimit, sometimes also called the direct limit, of
F consists of an abelian group colim¢ F together with a transformation Tr: F —
Ceolime F such that for any abelian group B and transformation T': ' — Cp there
exists precisely one homomorphism of abelian groups ¢: colim¢ F — B satisfying
Cy o Tr = T. The colimit is unique (up to unique isomorphism) and always exists.
If we replace abelian group by ring or by R-module respectively, we get the notion
of a colimit, sometimes also called a direct limit, of functors from a small category
to rings or R-modules respectively.

Conjecture 2.67 (Farrell-Jones Conjecture for Ko(RG) for regular R with
Q C R). Let R be aregular ring with Q € R and let G be a group.
Then the homomorphism

(2.68) I#7n(G,F): COIimHeSub;qN(G) Ko(RH) — Ky(RG)
coming from the various inclusions of finite subgroups of G into G is a bijection.

One can also ask for the following stronger version of Conjecture 2.67, which
also encompasses Conjecture 2.60.

Conjecture 2.69 (Farrell-Jones Conjecture for Ky(RG) for regular R). Let R be
aregular ring and let G be a group. Let P (G, R) be the set of primes which are not
invertible in R and for which G contains an element of order p.
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Then the homomorphism
I (G, F): colimpesub,,y(G) Ko(RH) — Ko(RG)

coming from the various inclusions of finite subgroups of G into G is a P (G, R)-
isomorphism, i.e., an isomorphism after inverting all primes in (G, R).

We mention that the surjectivity of the map I#7 (G, F) is equivalent to the
surjectivity of the map induced by the various inclusions of subgroups H € FI N
into G

D Ko(RH) — Ko(RG).
HeFIN

because this map factorizes as

Irrn(GLF
_ 5

¥ . )
@ Ko(RH) — colimpyesuby,y(G) Ko(RH) Ko(RG),

HeFIN
where the first map ¢ is surjective.

Remark 2.70 (Module-theoretic relevance of Conjecture 2.67). Conjecture 2.67
implies that for a regular ring R with Q C R every finitely generated projective
R-module is, up to adding finitely generated free RG-modules, a direct sum of
finitely many RG-modules of the shape RG ®gp P for a finite subgroup H € G and
a finitely generated projective RH-module P. So it predicts the (stable) structure of
finitely generated projective RG-modules in the most elementary way. We mention,
however, that the situation is much more complicated in the case where we drop the
assumption that R is regular and Q C R. In particular, for R = Z new phenomena
will occur, as explained later, which are related to so-called negative K-groups
and Nil-groups. For instance, the obvious inclusion Z/6 — Z X Z/6 does not
induce a surjection Ko(Z[Z/6]) — Ko(Z[Z x Z/6]), since Ko(Z[Z/6]) = 0 and
Ko(Z[Z x Z7/6]) = Z, whereas by Ko(Q[Z/6]) — Ko(Q[Z X Z/6]) is known to be
bijective as predicted by Conjecture 2.67.

Remark 2.71 (Conjecture 2.67 and the Atiyah Conjecture). Conjecture 2.67 plays
a role in a program aiming at a proof of the Atiyah Conjecture about L’-Betti
numbers, as explained in [650, Section 10.2]. Atiyah defined the n-th L2-Betti number
of the universal covering M of a closed Riemannian manifold M to be the non-
negative real number

b (M) = lim [ tr(e” %)) dx
1= JF
where ¥ is a fundamental domain for the 7 (M)-action and e ~*A»(X-X) denotes the
heat kernel on M. The version of the Atiyah Conjecture which we are interested in
and which is at the time of writing open says that d - b’(12) (M) is an integer if d is an
integer such that the order of any finite subgroup of 7 (M) divides d. In particular
b ,(12) (M) is expected to be an integer if 711 (M) is torsionfree. This gives an interesting
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connection between the analysis of heat kernels and the projective class group of
complex group rings CG.

If one drops the condition that there exists a bound on the order of finite subgroups
of 71 (M), then also transcendental real numbers can occur as the L>-Betti number
of the universal covering M of a closed Riemannian manifold M , see [58, 433, 809].

An R-module M is called Artinian if for any descending series of submodules
M; 2 M, 2 --- there exists an integer k such that My = My = Myyp = -+
holds. An R-module M is called simple or irreducible it M # {0} and M contains
only {0} and M as submodules. A ring R is called Artinian if both R considered
as a left R-module is Artinian and R considered as a right R-module is Artinian,
or, equivalently, every finitely generated left R-module and every finitely generated
right R-module is Artinian. Skew-fields and finite rings are Artinian, whereas Z is
not Artinian.

Conjecture 2.72 (Farrell-Jones Conjecture for Ky(RG) for an Artinian ring R).
Let G be a group and R be an Artinian ring.
Then the canonical map

Iern(G, R): colimpesuby,y(G) Ko(RH) — Ko(RG)

is an isomorphism

2.9 Kaplansky’s Idempotent Conjecture

In this section we discuss the following conjecture.

Conjecture 2.73 (Kaplansky’s Idempotent Conjecture). Let R be an integral
domain and let G be a torsionfree group. Then all idempotents of RG are trivial, i.e.,
equal to O or 1.

Remark 2.74 (Kaplansky’s Idempotent Conjecture for prime characteristic).
There is a reasonable more general version of Conjecture 2.73 where one replaces
the condition that G is torsionfree by the weaker condition that any prime p which
divides the order of some finite subgroup H C G is not invertible in the integral
domain R. If R is a skew-field of prime characteristic p, then this condition reduces
to the condition that any finite subgroup H of G is a p-group.

The version of Kaplansky’s Idempotent Conjecture 2.73 described in Remark 2.74
is consistent with the observation that the only known idempotents in a group ring
RG come from idempotents in R or by the following construction.

Example 2.75 (Construction of idempotents). Let G be a group and g € G be

an element of finite order. Suppose that the order |g| is invertible in R. Define an

element x := [g|~! - le.i‘l g'. Then x? = x, i.e., x is an idempotent in RG.
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Exercise 2.76. Show that the version of Kaplansky’s Idempotent Conjecture of
Remark 2.74 holds for G = Z/2.

Exercise 2.77. Consider the ring R = Z[x]/(2x*> - 3x + 1). In the sequel denote by
u the class of u € Z[x] in R. Show:

(1) 2 is not invertible in R;
(ii) There are precisely two non-trivial idempotents in R, namely 2 —2x and
-1+ 2x;
(iii) The element x + (1 — X) - ¢ is a non-trivial idempotent in R[Z/2].

Remark 2.78 (Sofic groups). In the next theorem we will use the notion of a sofic
group that was introduced by Gromov and originally called subamenable group.
Every residually amenable group is sofic but the converse is not true. The class of
sofic groups is closed under taking subgroups, direct products, amalgamated free
products, colimits and inverse limits, and, if H is a sofic normal subgroup of G
with amenable quotient G/H, then G is sofic. To the authors’ knowledge there is
no example of a group that is not sofic. There is a note by Dave Witte Morris [752]
following Deligne [300] where a central extension | - Z — G — SP(2n,R) — 1
is constructed such that G is not residually finite. The group G is viewed as a
candidate for a group which is not sofic. It is unknown but likely to be true that all
hyperbolic groups are sofic. For more information about the notion of a sofic group
we refer to [332].

Definition 2.79 (Directly finite). An R-module M is called directly finite if every
R-module N satisfying M =g M @ N is trivial. A ring R is called directly finite (or
von Neumann finite) if it is directly finite as a module over itself, or, equivalently, if
r,s € Rsatisfy rs = 1, then sr = 1. A ring is called stably finite if the matrix algebra
M,,(R) is directly finite for all n > 1.

Remark 2.80 (Stable finiteness). Stable finiteness for a ring R is equivalent to the
following statement. Every finitely generated projective R-module P whose class in
Ko(R) is zero is already the trivial module, i.e., 0 = [P] € Ky(R) implies P = 0.

If F is a field of characteristic zero, then FG is stably finite for every group G.
This is proved by Kaplansky [544], see also Passman [791, Corollary 1.9 on page
38]. If R is a skew-field and G is a sofic group, then RG is stably finite. This is
proved for free-by-amenable groups by Ara-Meara-Perera [35] and extended to sofic
groups by Elek-Szabo [331, Corollary 4.7]. These results have been extended to
extensions with a finitely generated residually finite groups as kernel and a sofic
finitely generated group as quotient by Berlai [128].

The next theorem is taken from [88, Theorem 1.12].

Theorem 2.81 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent
Conjecture). Let G be a group. Let R be a ring whose idempotents are all triv-
ial. Suppose that

Ko(R) ®2 Q— Ko(RG) ®z Q
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is an isomorphism.
Then 0 and 1 are the only idempotents in RG if one of the following conditions is
satisfied:

(1) RG is stably finite;
(i1) R is a field of characteristic zero;
(iii) R is a skew-field and G is sofic.

Remark 2.82 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent Con-
jecture). Theorem 2.81 implies that for a skew-field D of characteristic zero and
a torsionfree group G Kaplansky’s Idempotent Conjecture 2.73 is true for DG,
provided that Conjecture 2.60 holds and that D is commutative or G is sofic.

Remark 2.83 (The Farrell-Jones Conjecture and the Kaplansky’s Idempotent
Conjecture for prime characteristic). Suppose that D is a skew-field of prime
characteristic p, that Conjecture 2.72 holds for G and D, and that all finite subgroups

of G are p-groups. Then Ko(D) — Ko(DG) is an isomorphism since for a finite
p-group H the group ring DH is a local ring, see [271, Theorem 5.24 on page 114],
and hence Ko(DH) = 0 by Lemma 2.123. If we furthermore assume that G is sofic,
then Theorem 2.81 implies that all idempotents in DG are trivial.

Remark 2.84 (Reducing the case of a field of characteristic zero to C). Let F be
a field of characteristic zero and let u = X, X¢ - § € FG be an element. Let K be
the finitely generated field extension of Q given by K = Q(x; | g € G) C F. Then u
is already an element in KG. The field K embeds into C since X is finitely generated,
it is a finite algebraic extension of a transcendental extension K’ of Q, see [617,
Theorem 1.1 on p. 356], and K’ has finite transcendence degree over Q. Since the
transcendence degree of C over Q is infinite, there exists an embedding K’ — C
induced by an injection of a transcendence basis of K over Q into a transcendence
basis of C over Q. It extends to an embedding K < C because C is algebraically
closed. Hence u can be viewed as an element in CG. This reduces the case of fields
F of characteristic zero to the case F = C.

Next we mention some further results.

Formanek [398, Theorem 9], see also [189, Proposition 4.2], has shown that
all idempotents of FG are trivial, provided that F is a field of characteristic zero
and there are infinitely many primes p for which there do not exist an element
g € G,g # 1 and an integer k > 1 such that g and gpk are conjugate. Torsionfree
hyperbolic groups satisfy these conditions. Hence Formanek’s results imply that
all idempotents in FG are trivial if G is torsionfree hyperbolic and F is a field of
characteristic zero.

Delzant [301] has proved the Kaplansky’s Idempotent Conjecture 2.73 for all
integral domains R for a torsionfree hyperbolic group G, provided that G admits an
appropriate action with large enough injectivity radius. Delzant actually deals with
zero-divisors and units as well.
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Remark 2.85 (Conjectures related to the Idempotent conjecture). There are also
the Zero-Divisor Conjecture due to Kaplansky, which predicts for an integral do-
main R and a torsionfree group G that RG has no non-trivial zero-divisors, and
the Embedding Conjecture due to Malcev, which predicts for an integral domain R
and a torsionfree group G that RG can be emdedded into a skew-field. Obviously
the Embedding Conjecture implies the Zero-Divisor Conjecture, which in turn im-
plies the Idempotent Conjecture 2.73. The Zero-Divisor Conjecture does not follow
from Conjecture 2.60. For a ring R with Q € R = C the Zero-Divisor Conjecture
follows from the Atiyah Conjecture about the integrality of L>-Betti numbers for
torsionfree groups, see [650, Lemma 10.15 on page 376]. There is also the Unit-
Conjecture 3.125, which implies the Zero-Divisor Conjecture, see [610, (6.20) on
page 95], and is discussed in Section 3.14.

2.10 The Bass Conjectures
2.10.1 The Bass Conjecture for Fields of Characteristic Zero as Coefficients

Let G be a group. Let con(G) be the set of conjugacy classes (g) of elements g € G.
Denote by con(G) the subset of con(G) consisting of those conjugacy classes (g)
for which each representative g has finite order. Let R be a commutative ring. Let
class(G, R) and class(G, R) s be the free R-module with the set con(G) and con(G) s
as basis. This is the same as the R-module of R-valued functions on con(G) and
con(G) s with finite support. Define the universal R-trace

(2.86) . : RG — class(G, R), Z re-g Z re - (g).
geG geG

It extends to a function try : M, (RG) — class(G, R) on (n, n)-matrices over RG
by taking the sum of the traces of the diagonal entries. Let P be a finitely generated
projective RG-module. Choose a matrix A € M,,(RG) such that A> = A and the
image of the RG-map r4: RG" — RG" given by right multiplication with A is
RG-isomorphic to P. Define the Hattori-Stallings rank of P to be

(2.87) HSRG (P) = triy;(A) € class(G, R).

The Hattori-Stallings rank depends only on the isomorphism class of the RG-module
P. It induces an R-homomorphism, the Hattori-Stallings homomorphism,

(2.88) HSgG: Ko(RG) ®z R — class(G,R), [P]®r +— r-HSgg(P).

Let F be a field of characteristic zero. Fix an integer m > 1. Let F({,,) D F be
the Galois extension given by adjoining the primitive m-th root of unity ¢, to F.
Denote by I'(m, F) the Galois group of this extension of fields, i.e., the group of
automorphisms o : F(¢,,) — F({,) thatinduce the identity on F. It can be identified
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with a subgroup of Z/m* by sending o to the unique element u (o) € Z/m* for which
o (&m) = 49 holds. Let g, and g» be two elements of G of finite order. We call
them F-conjugate if for some (and hence all) positive integers m with gi" = g7* = 1
there exists an element o in the Galois group I'(m, F) with the property that g'f(a)
and g, are conjugate. Two elements g; and g, are F-conjugate for F = Q, R, or C, if
the cyclic subgroups (g1) and {g,) are conjugate if g; and g5, or g; and g2_1, or g
and g, are conjugate, respectively.

Denote by cong (G) the set of F-conjugacy classes (g)r of elements g € G of
finite order. Let classp (G) s be the F-vector space with the set cong(G) s as basis,
or, equivalently, the F-vector space of functions conr (G) s — F with finite support.
There are obvious inclusions of F-modules

classp(G) s C class(G, F)y C class(G, F).

Lemma 2.89. Suppose that F is a field of characteristic zero and H is a finite group.
Then the Hattori-Stallings homomorphism, see (2.88), induces an isomorphism

HSry: Ko(FH) ®z F — classp(H)y.

Proof. Since H is finite, an F'H-module is a finitely generated projective F H-module
if and only if it is a (finite-dimensional) H-representation with coefficients in " and
Ko(FH) is the same as the representation ring Rep (H). The Hattori-Stallings rank
HSFg (V) and the character yy of a G-representation V with coefficients in F are
related by the formula

(2.90) xv(h™") = |Cg(h)| - HSpu (V) (h)

for h € H where Cg(h) is the centralizer of /& in G. Hence Lemma 2.89 follows
from representation theory, see for instance [908, Corollary 1 in Chapter 12 on
page 96]. O

Exercise 2.91. Prove formula (2.90).

The following conjecture is the obvious generalization of Lemma 2.89 to infinite
groups.

Conjecture 2.92 (Bass Conjecture for fields of characteristic zero as coeffi-
cients). Let F be a field of characteristic zero and let G be a group. The Hattori-
Stallings homomorphism of (2.88) induces an isomorphism

HSpG: Ko(FG) ®z F — classF(G)f.
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Lemma 2.93. Suppose that F is a field of characteristic zero and G is a group. Then
the composite

Lrrn (G, F)®zid
2.94)  colimpesup,, (6 Ko(FH) ® F ~2 %0, ko (FG) @, F

HS
2re, class(G, F)

is injective and has as image classg(G)y where Igrn(G, F) is the map defined
in (2.68).

Proof. This follows from the commutative diagram below, compare [646, Lemma 2.15
on page 220].

. I (G,F)®zid
colimy e Subsrp(G) Ko(FH) @z F L) o Ko(FG)®z F

colimpyesubyyp(G) HSFH l = HSrG
colimyesuby,y(G) classy (H) s %- classp(G)y — > class(G, F).
Here the isomorphism j is the direct limit over the obvious maps classg(H) —
classp(G)r given by extending a class function in the trivial way and the map i is
the natural inclusion and in particular injective. |

Exercise 2.95. Let F be a field of characteristic zero. Show that the group G must
be torsionfree if Ko(FG) is a torsion group.

Theorem 2.96 (The Farrell-Jones Conjecture and the Bass Conjecture for fields
of characteristic zero). The Farrell-Jones Conjecture 2.67 for Ko(RG) for regular
R and Q C R implies the Bass Conjecture 2.92 for fields of characteristic zero as
coefficients.

Proof. This follows from Lemma 2.93. O

The Bost Conjecture 14.23 implies the Bass Conjecture 2.92 for fields of char-
acteristic zero as coefficients, provided that ' = C, see [131, Theorem 1.4 and
Lemma 1.5].

Exercise 2.97. Let F be field of characteristic zero and let G be a group. Suppose
that the Farrell-Jones Conjecture 2.67 for Ko(RG) for regular R and Q C R holds
for R = F. Consider any finitely generated projective FG-module P. Then the
Hattori-Stallings rank HS i (P) evaluated at the unit e € G belongs to Q C F.

Remark 2.98 (Zalesskii’s Theorem). Zalesskii [1031], see also [189, Theorem 3.1],
has shown for every field F, every group G, and every idempotent x € FG that
HSFg ((x)) evaluated at the unit e € G belongs to the prime field of F, where (x) is
the finitely generated projective FG-module given by the two-sided ideal (x) € FG
spanned by x.
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2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.99 (Bass Conjecture for integral domains as coefficients). Let R
be a commutative integral domain and let G be a group. Let g € G be an element in
G. Suppose that either the order |g| is infinite or that the order |g| is finite and not
invertible in R.

Then for every finitely generated projective RG-module P the value of its Hattori-
Stallings rank HSgi (P) at (g) is trivial.

Sometimes the Bass Conjecture 2.99 for integral domains as coefficients is called
the Strong Bass Conjecture, see [104, 4.5]. The Weak Bass Conjecture, see [104,
4.4], states for a finitely generated projective ZG-module P that the evaluation of its
Hattori-Stallings rank at the unit HSz; (P) (1) agrees with dimz(Z®z¢ P). Note that
HS7zc (P)(1) is the same as the von Neumann dimension dim y(G) (N (G) ®z¢ P) for
a finitely generated projective ZG-module P, see [650, Corollary 9.61 on page 362].

Exercise 2.100. Show that the Weak Bass Conjecture follows from the Bass Con-
jecture 2.99 for integral domains as coefficients.

The Bass Conjecture 2.99 can be interpreted topologically. Namely, the Bass
Conjecture 2.99 is true for a finitely presented group G in the case R = Z if and
only if every homotopy idempotent self-map of an oriented smooth closed manifold
whose dimension is greater than 2 and whose fundamental group is isomorphic
to G, is homotopic to one that has precisely one fixed point, see [132]. The Bass
Conjecture 2.99 for G in the case R = Z (or R = C) also implies for a finitely
dominated CW-complex with fundamental group G that its Euler characteristic
agrees with the L2-Euler characteristic of its universal covering, see [327, 0.3].

The next results follows from the argument in [372, Section 5].

Theorem 2.101 (The Farrell-Jones Conjecture and the Bass Conjecture for
integral domains). Let G be a group. Suppose that

I(G,F)®zQ: COlimOT'ij(G) Ko(FH) @2 Q — Ko(FG) ®2,Q

is surjective for all fields F of prime characteristic.

Then the Bass Conjecture 2.99 is satisfied for G and every commutative integral
domain R.

In particular, the Bass Conjecture 2.99 follows from the Farrell-Jones Conjec-
ture 2.72.

For finite G and R an integral domain such that no prime dividing the order of
|G| is a unit in R, Conjecture 2.99 was proved by Swan [937, Theorem 8.1], see
also [104, Corollary 4.2]. The Bass Conjecture 2.99 has been proved by Bass [104,
Proposition 6.2 and Theorem 6.3] for R = C and G a torsionfree linear group and by
Eckmann [325, Theorem 3.3] for R = Q, provided that G has at most cohomological
dimension 2 over Q.

The following result is due to Linnell [632, Lemma 4.1].
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Theorem 2.102 (The Bass Conjecture for integral domains and elements of
finite order). Let G be a group.

(i) Let p be a prime, and let P be a finitely generated projective Z,)G-module.
Suppose for g € G that HS(P)(g) # 0. Then there exists an integer n > 1 such
that g and gP" are conjugate in G and we get for the Hattori-Stallings rank
HS(P)(g) = HS(P)(g"");

(ii) Let P be a finitely generated projective ZG-module. Suppose for g € G that
g # 1and HS(P)(g) # 0. Then there exist subgroups C, H of G such that g € C,
C C H, C is isomorphic to the additive group Q, H is finitely generated, and the
elements of C lie in finitely many H-conjugacy classes. In particular the order
of g is infinite.

More information about the Bass Conjectures can be found in [103, 131, 133,
189, 234, 336, 337, 338, 546, 650, 788, 893, 894].

2.11 The Passage from the Integral to the Rational Group Ring

The following conjecture is taken from [673, Conjecture 85 on page 754].

Conjecture 2.103 (The rational fo(ZG)-to-fo(QG)-Conjecture). The change of
ring maps _ _
Q ®z Ko(ZG) — Q ®z Ko(QG)

is trivial.

If G satisfies the Farrell-Jones Conjecture 2.67 for Ko(RG) for regular R with
Q C R, then it satisfies the rational Ky(ZG)-to-K(QG)-Conjecture 2.103, see [673,
Proposition 87 on page 754].

Remark 2.104. The question whether an integral version of Conjecture 2.103 holds,
i.e., whether the change of ring maps

Ko(ZG) — Ko(QG)

is trivial, is discussed in [673, Remark 89 on page 756].

The answer is no in general. Counterexamples have been constructed by
Lehner [625], who actually carefully analyzes the image of the map Ko(ZG) —
EO(QG). The group G = QD3 *g,, QD3 is a counterexample, where QD3 is the
quasi-dihedral group of order 32, and Q¢ is the generalized quaternion group of
order 16, see [625, Theorem 1.5].
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2.12 Survey on Computations of Ky(RG) for Finite Groups

In this section we give a brief survey about computations of Ko(RG) for finite groups
G and certain rings R. The upshot will be that the reduced projective class group
Ko (ZG) is a finite abelian group, but in most cases it is non-trivial and unknown, and
that for F a field of characteristic zero Ko(FG) is a well-known finitely generated
free abelian group.

The following result is due to Swan [937, Theorem 8.1 and Proposition 9.1].

Theorem 2.105 (Ko (RG) is finite for finite G and R the ring of integers in an
algebraic number field). Let G be a finite group. Let R be the ring of algebraic
integers in an algebraic number field, e.g., R = Z. Then Ky(RG) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally proved
by Rim [852].

Theorem 2.106 (Rim’s Theorem). Let p be a prime number. The homomorphism
induced by the ring homomorphism Z|Z/p] — Z|exp(2xi/p)] sending the genera-
tor of Z| p to the primitive p-th root of unity exp(2ni/p)

Ko(Z[Z/p)) = Ko(Z[exp(2xi/p)])
is a bijection.

Example 2.107 (Ko (Z[Z/p])). Let p be a prime. We have already mentioned in
Remark 2.23 that Z[exp(2ni/p)] is the ring of integers in the algebraic number field
Q[exp(27i/p)] and hence a Dedekind domain and that the structure of its ideal class
group C(Z[exp(2ni/p)]) is only known for a few primes. Thus the message of Rim’s
Theorem 2.106 is that we know the structure of the finite abelian group Ko(Z[Z/ rD
only for a few primes. Here is a table taken from [727, page 30] or [990, Tables §3
on page 352ff].

p | Ko(Z[Z/p])
<19 {0}

23 7/3

29 |Z20Z/20Z)2

31 Z/9

37 7/37

41 | zZ/11e7Z/11

43 Z/211

47 | Z/502Z/139

Remark 2.108 (Strategy to study K, (ZG) for finite G). A Z-order A is a Z-algebra
that is finitely generated projective over Z. Its locally free class group is defined as
the subgroup of Ky(A)

(2.109) CI(A) := {[P] - [Q] | P(p) =a,,, Q(p) for all primes p}
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where (p) denotes localization at the prime p. This is the part of Kp(A) that can be
described by localization sequences. Its significance for A = ZG lies in the result
of Swan [937], see also Curtis-Reiner [271, Theorem 32.11 on page 676] and [272,
(49.12 on page 221], that Ko(ZG) = CI(ZG) for every finite group G. Now fix a
maximal Z-order ZG € M C QG. Such a maximal order has better ring properties
than ZG, namely, it is a hereditary ring. The map i.: CI(ZG) — CI(M) induced
by the inclusion i: ZG — M is surjective. Define

(2.110) D(ZG) = ker (i»: CI(ZG) — CI(M)).

The definition of D(ZG) is known to be independent of the choice of the maximal
order M. Thus the study of Ko(ZG) splits into the study of D(ZG) and CI(M).
The analysis of CI(M) can be intractable and involves studying cyclotomic fields,
whereas the analysis of D(ZG) essentially uses p-adic logarithms.

Remark 2.111 (Finiteness obstructions and D (ZG)). Often calculations concern-
ing finiteness obstructions are done by first showing that its image in CI(M) =
Ko(ZG)/D(ZG) is trivial, and then determining it in D(ZG). For instance, Mis-
lin [739] proved that the finiteness obstruction for every finitely dominated homolog-
ically nilpotent space with the finite group G as fundamental group lies in D(ZG),
but that not every element in D(ZG) occurs this way. Questions concerning the
Spherical Space Form Problem involve direct computations in D(ZG), see for in-
stance Bentzen [122], Bentzen-Madsen [123], and Milgram [719]. The group D (ZG)
enters also in the work of Oliver on actions of finite groups on disks, see [771, 772].

For computations of D (ZG) for finite p-groups we refer to Oliver [773, 774] and
Oliver-Taylor [777].

A survey on D(ZG) and the methods of its computations can be found in
Oliver [775].

Theorem 2.112 (Vanishing results for D (ZG)).

(1) Let G be a finite abelian group G. Then D(ZG) = 0 holds if and only if G
satisfies one of the conditions:

(a) G has prime order;
(b) G is cyclic of order 4, 6, 8, 9, 10, 14;
©) GisZ/2XZ]2;

(ii) If G is a finite group that is not abelian and satisfies D(ZG) = 0, then it is D5,
forn >3, Ay, As,or S4;

(iii) One has D(ZG) = 0if G is A4, As or S4;

(iv) D(ZD»y) = 0 for n < 60 and D(ZD 1y) = Z/2;

(V) D(ZD»y,) = 0 if n satisfies one of the following conditions:

(a) n is an odd prime;
(b) n is a power of a regular odd prime;
(c) n is a power of 2.
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Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Theorem 50.16 on
page 253].

(i1) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266].

(iii) This follows from Reiner-Ulom [849], see also [272, Theorem 50.29 on
page 266].

(iv) This is proved in Endo-Miyata [340], see [272, Theorem 50.30 on page 266].

(v) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266]. |

Theorem 2.113 (Finite groups with vanishing EO(ZG)).

(i) Let G be a finite abelian group G. Then EO(ZG) = 0 holds if and only if G
satisfies one of the conditions:

(a) G is cyclic of order n for 1 <n < 11;
(b) G is cyclic of order 13, 14, 17, 19;
) GisZ/2XZ][2;

(i) If G is a non-abelian finite group with Ko(ZG) = 0, then G is Doy, for n > 3,
A4, As, or S4;
(iii) We have Ko(ZG) = 0 for G = A4, S4, D¢, Dg, D15.

Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Corollary 50.17
on page 253].

(ii) This follows from Theorem 2.112 (ii).

(iii) The cases G = A4, S4, D¢, Dg are already treated in [848, Theorem 6.4 and
Theorem 8.2]. Because of Theorem 2.112 (iii) it suffices to show for the maximal
order M for the groups G = Ay, S4, D¢, Dg, D1 that CI(M) = 0. This follows from
the fact that QG is a products of matrix algebras over Q and hence the maximal
Z-order M is a products of matrix rings over Z. O

Exercise 2.114. Determine all finite groups G of order < 9 for which Ko(ZG) is
non-trivial.

Theorem 2.115 (Ky(RG) for finite G and an Artinian ring R). Let R be an
Artinian ring. Let G be a finite group. Then RG is also an Artinian ring. There are
only finitely many isomorphism classes [P1], [P2], ..., [Pn] of irreducible finitely
generated projective RG-modules, and we obtain an isomorphism of abelian groups

n
7" = Ko(RG), (ki,ka,...kn) — Zki'[Pi]~
i1

Proof. This follows from [271, Proposition 16.7 on page 406 and the paragraph after
Corollary 6.22 on page 132]. O
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Let F be a field of characteristic zero or of characteristic p for a prime number
p not dividing |G|. Then Ko(FG) is the same as the representation ring Rep(G)
of G with coefficients in the field F since the ring FG is semisimple i.e., every
submodule of a module is a direct summand. If F' is a field of characteristic zero,
then representations are detected by their characters, see Lemma 2.89. For more
information about modules over FG for a finite group G and a field F we refer for
instance to Curtis-Reiner [271, Chapter 1 and Chapter 2] and Serre [908].

Exercise 2.116. Compute Ko(F Dg) for F = Q, R and C.

2.13 Survey on Computations of Ky(C; (G)) and Ky (N (G))

Let G be a group. Let B(L*(G)) denote the algebra of bounded linear operators
on the Hilbert space L?(G) whose orthonormal basis is G. The reduced group
C*-algebra C)(G) is the closure in the norm topology of the image of the reg-
ular representation CG — B(L*(G)) that sends an element u € CG to the (left)
G-equivariant bounded operator L?>(G) — L?(G) given by right multiplication with
u~'. The group von Neumann algebra N (G) is the closure in the weak topology.
There is an identification N'(G) = B(L?(G))®. One has natural inclusions

CG C C:(G) S N(G) € B(L*(G)).

We have CG = C;(G) = N(G) if and only if G is finite. If G = Z, then the
Fourier transform gives identifications C/(Z) = C(S') and N(Z) = L™ (S").

Remark 2.117 (Ko (C;:(G)) versus Ko(CG)). We will later see that the study of
Ko (C;(G)) is not done according to its algebraic nature. Instead we will introduce
and analyze the topological K-theory of C;(G) and explain that in dimension O
the algebraic and the topological K-theory of C)(G) agree. In order to explain
the different flavor of Ko(C;(G)) in comparison with Ko(CG), we mention the
conclusion of the Baum-Connes Conjecture for torsionfree groups 10.44 that for
torsionfree G there exists an isomorphism

P H2n(BG:Q) = Ko(C}(G)) @2 Q.

n>0

The space BG is the classifying space of the group G, which is up to homotopy
characterized by the property that it is a CW-complex with 7;(BG) = G whose
universal covering is contractible. We denote by H.(X, R) the singular or cellular
homology of a space or CW-complex X with coefficient in a commutative ring R.
We can identify H.(BG; R) with the group homology of G with coefficients in R.
We see that Ko(C;(G)) can be huge also for torsionfree groups, whereas
Ko(CG) = Z for torsionfree G is a conclusion of the Farrell-Jones Conjecture 2.60
for Ko(R) for torsionfree G and regular R. We see already here a homological be-



64 2 The Projective Class Group

havior of Ky (C}:(G)), which is not yet evident in the case of group rings so far and
will become clear later.

Remark 2.118 (Ky(N(G))). The projective class group Ko(A) can be computed
for any von Neumann algebra A using the center-valued universal trace, see for
instance [650, Section 9.2]. In particular one gets for a finitely generated group G
that does not contain Z" as subgroup of finite index an isomorphism

Ko(N(G)) = Z(N(G))*>.

Here Z (N (G)) is the center of the group von Neumann algebra and the Z/2-action
comes from taking the adjoint of an operator in 8(L?(G)), see [650, Example 9.34
on page 353]. If G is a finitely generated group that does not contain Z" as subgroup
of finite index and for which the conjugacy class (g) of an element g different from
the unit is always infinite, then Z (N (G)) = C and one obtains an isomorphism

Ko(N(G)) = R.

A pleasant feature of N(G) is that there is no difference between stably isomorphic
and isomorphic in the sense that for three finitely generated projective N (G)-modules
Py, P1,and Q we have Py ® Q =x/g) P1 © Q if and only if Py =xG) Pi.

We see that in the case of the group von Neumann algebra we can compute
Ko(N(G)) completely, but the answer does not show any homological behavior in
G. In fact, the Farrell-Jones Conjecture and the Baum-Connes Conjecture have no
analog for group von Neumann algebras.

Exercise 2.119. Let G be a torsionfree hyperbolic group that is not cyclic. Prove
Ko(N(G)) =R.

Remark 2.120 (Change of rings homomorphisms for K, for ZG — CG —
C:(G) — N(G)). We summarize what is conjectured or known about the string of
change of rings homomorphism

Ko(ZG) 5 Ko(CG) 3 Ko(CHG)) D Ro(N(G))

coming from the various inclusion of rings. The first map 7; is conjectured to be
rationally trivial, see [673, Conjecture 85 on page 754], but is not integrally trivial,
see [625, Theorem 5.1]. The second map i, is conjectured to be rationally injective,
compare [649, Theorem 0.5], but is not surjective in general. The map i3 is in general
not injective, not surjective, and not trivial. It is known that the composite i3 0 i o i}
is trivial, see for instance [650, Theorem 9.62 on page 362]..
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2.14 Notes

Algebraic K-theory is compatible with direct limits, as explained for the projective
class group next. A directed set I is a non-empty set with a partial ordering < such
that for two elements iy and i there exists an element { with i) < iandi; <i. A
directed system of rings is a set of rings {R; | i € I} indexed by a directed set /
together with a choice of a ring homomorphism ¢; ;: R; — R fori, j € I withi < j
such that ¢; x = ¢; x o ¢; j holds fori, j, k € I withi < j < k and ¢; ; = id holds
for i € I. The colimit, sometimes also called the direct limit, of {R; | i € I} is aring
denoted by colim;¢; R; together with ring homomorphisms ¢ ;: R; — colim;¢; R;
for every j € I such that ; o ¢; ; = y; holds for i,j € I withi < j and the
following universal property is satisfied: For every ring S and every system of ring
homomorphisms {u;: R; — S | i € I'} suchthat u;o¢; ; = y; holdsfori, j € I with
i < J, there is precisely one ring homomorphism g : colim;e; R; — S satisfying
poy; = p; forevery i € I. If we replace ring by group or module everywhere, we
get the notion of directed system and direct limit of groups or modules respectively.
This is a special case of the direct limit of a functor, namely, consider [ as category
with the set I as objects and precisely one morphism from i to j if i < j, and no
other morphisms.

Remark 2.121 (Filtered categories). One may consider instead of a directed set a
filtered category, i.e, a nonempty category I such that for every two objects i and
J there is an object k together with two morphisms i — k and j — k and for
two morphism f,g: i — j with the same source and target there is a morphism
h: j — k with hj o f = h o k, and all the results about colimits over directed
sets stay true if one considers colimits over filtered categories. Then one talks about
filtered systems instead of filtered sets.

Let {R; | i € I} be adirect system of rings. For every i € I, we obtain a change of
rings homomorphism (¢;).: Ko(R;) — Ko(R). The universal property of the direct
limit yields a homomorphism

(2.122) colimjes (W:).: colimjes Ko(R:) — Ko(R),

which turns out to be an isomorphism, see [860, Theorem 1.2.5].

We denote by R* the group of units in R. A ring R is called local if the set
I := R — R* forms a (left) ideal. If I is a left ideal, it is automatically a two-sided
ideal and it is maximal both as a left ideal and as a right ideal. A ring R is local if and
only if it has a unique maximal left ideal and a unique maximal right ideal and these
two coincide. An example of a local ring is the ring of formal power series F[[¢]]
with coefficients in a field F. If R is a commutative ring and / is a prime ideal, then
the localization Ry of R at I is a local ring.

Theorem 2.123 (Ky(R) of local rings). Let R be a local ring. Then every finitely
generated projective R-module is free and Ky(R) is infinite cyclic with [R] as
generator.
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Proof. See for instance [727, Lemma 1.2 on page 5] or [860, Theorem 1.3.11 on
page 14]. O

The proof is based on Nakayama’s Lemma, which says for a ring R and a finitely
generated R-module M that rad(R)M = M <= M = 0 holds. Here rad(R) is the
radical, or Jacobson radical, i.e., the two-sided ideal that is given by the intersection
of all maximal left ideals, or, equivalently, of all maximal right ideals of R. The
radical is the same as the set of elements r € R for which there exists an s € S such
that 1 — rs has a left inverse in R.

If R is a commutative ring and spec(R) is its spectrum consisting of its prime
ideals and equipped with the Zariski topology, then we obtain for every finitely
generated projective R-module P a continuous rank function Spec(R) — Z by
sending a prime ideal / to the rank of the finitely generated free R;-module P; =
P ®r R;. This makes sense because of Theorem 2.123 since Ry is local. If R is a
commutative integral domain, this rank function is constant. For more details we
refer for instance to [860, Proposition 1.3.12 on page 15].

Exercise 2.124. Prove for an integer n > 1 that Ko(Z/n) is the free abelian group
whose rank is the number of prime numbers dividing n.

A ring is called semilocal if R/rad(R) is Artinian, or, equivalently, R/rad(R) is
semisimple. If R is commutative, then R is semilocal if and only if it has only finitely
many maximal ideas, see [916, page 69]. For a semilocal ring R, the projective class
group Ko (R) is a finitely generated free abelian group, see [916, Proposition 14 on
page 28]. More information about semilocal rings can be found for instance in [610,
§ 20].

Lemma 2.125. For any ring R and nilpotent two-sided ideal 1 C R, the map
Ko(R) — Ko(R/I) induced by the projection R — R/I is bijective.

Proof. See [998, Lemma 2.2 in Section I1.2 on page 70]. O

Given two groups G| and G, let G| = G, by the amalgamated free product. Then
the natural maps Gy — G * G| for k = 1,2 induce an isomorphism, see [421,
Theorem 1.1],

(2.126) Ko(Z[G1]) ® Ko(Z[G1]) = Ko(Z[G * Gal).

This is a first glimpse of a homological behavior of Ky if one compares this with the
corresponding isomorphism of group homology

H,(G1) ® Hy(G1) = H,(Gi % G»).

Exercise 2.127. Show that the projections pr,: G| X G, — Gy for k = 1,2 do not
in general induce isomorphisms

Ko(Z[G1 x G2]) — Ko(Z[G1]) x Ko(Z[Ga)).
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There are also equivariant versions of the finiteness obstructions, see for in-
stance [32], [642], and [644, Chapter 3 and 11]. Finiteness obstructions for categories
are investigated in [391, 390].

Andrej Jaikin-Zapirain pointed out that he and Pablo Sanchez-Peralta have proved
the following result confirming Conjecture 2.60 in a special case.

A presentation G = (X | R) is called a Cohen—Lyndon presentation if for each
r € R, there exists a transversal 7, of the normal subgroup N = ((R)), such that N
is freely generated by the set {r8 | r € R, g € T} }.

They prove that if G has a Cohen-Lyndon presentation and S is a regular ring,
then the natural map

Ko(S) — Ko(S[G])

is an isomorphism.



