
 

    Chapter 2
The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group 𝐿0 (𝑀) of a ring 𝑀.
We give in Section 2.2 three equivalent definitions of 𝐿0 (𝑀), namely, by

the universal additive invariant for finitely generated projective modules, by the
Grothendieck construction applied to the abelian monoid of isomorphism classes
of finitely generated projective modules, and by idempotent matrices, and discuss
the significance of 𝐿0 (𝑀) for the category of finitely generated projective modules.
Some calculations for principal ideal domains and Dedekind rings are provided in
Section 2.3.

We explain the connections to geometry. We prove Swan’s Theorem 2.27, which
identifies 𝐿0 (𝑁0 ($)) for the ring 𝑁0 ($) of continuous functions on a compact
space $ with the Grothendieck group of the abelian monoid of isomorphism classes
of vector bundles over $ , see (2.31). The relevance of 𝐿0 (Z𝑃) for topologists is
illustrated by Wall’s finiteness obstruction, which also leads to a geometric descrip-
tion of 𝐿0 (Z𝑃) in terms of finitely dominated spaces and is discussed in detail in
Section 2.5.

We introduce variants of the 𝐿-theoretic Farrell-Jones Conjecture for projective
class groups in Section 2.8. A prototype asserts that for a torsionfree group 𝑃 and a
regular ring 𝑀, e.g., 𝑀 = Z or 𝑀 a field, the change of rings map

𝐿0 (𝑀) →→ 𝐿0 (𝑀𝑃)

is bijective. It implies the conjecture that for a torsionfree group 𝑃 the reduced
projective class group 𝐿0 (Z𝑃) vanishes, which is for finitely presented𝑃 equivalent
to the conjecture that every finitely dominated 𝑁𝑄-complex with 𝑅1 ($) 𝑃 is
homotopy equivalent to a finite𝑁𝑄-complex. We also introduce a version where the
group is not necessarily torsionfree, but 𝑀 is a regular ring with Q ⊆ 𝑀 or a field of
prime characteristic.

In Section 2.9 we consider Kaplansky’s Idempotent Conjecture, which asserts for
a torsionfree group 𝑃 and a field 𝑆 that 0 and 1 are the only idempotents in 𝑆𝑃.
It is a consequence of the Farrell-Jones Conjecture. We also discuss various Bass
Conjectures, all ofwhich are implied by the Farrell-JonesConjecture, in Section 2.10.

Finally, we give a survey of 𝐿0 (Z𝑃) for finite groups 𝑃 and of 𝐿0 (𝑁∗
! (𝑃)) in

Section 2.12 and of 𝐿0 (N (𝑃)) in Section 2.13, where 𝑁∗
! (𝑃) is the reduced group

𝑁∗-algebra and N(𝑃) the group von Neumann algebra.
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30 2 The Projective Class Group

2.2 Definition and Basic Properties of the Projective Class Group

Definition 2.1 (Projective class group 𝐿0 (𝑀)). Let 𝑀 be an (associative) ring
(with unit). Define its projective class group 𝐿0 (𝑀) to be the abelian group
whose generators are isomorphism classes [𝑇] of finitely generated projective
𝑀-modules 𝑇 and whose relations are [𝑇0] + [𝑇2] = [𝑇1] for any exact sequence
0 → 𝑇0 → 𝑇1 → 𝑇2 → 0 of finitely generated projective 𝑀-modules.

Define 𝑃0 (𝑀) analogously but replacing finitely generated projective by finitely
generated.

Given a ring homomorphism 𝑈 : 𝑀 → 𝑉, we can assign to an 𝑀-module 𝑊 an
𝑉-module 𝑈∗𝑊 by 𝑉 ⊗𝑀 𝑊 where we consider 𝑉 as a right 𝑀-module using 𝑈 . We say
that 𝑈∗𝑊 is obtained by induction with f from 𝑊 . If 𝑊 is finitely generated or free
or projective, the same is true for 𝑈∗𝑊 . This construction is natural, compatible with
direct sums, and sends an exact sequence 0 → 𝑇0 → 𝑇1 → 𝑇2 → 0 of finitely gener-
ated projective 𝑀-modules to an exact sequence 0 → 𝑈∗𝑇0 → 𝑈∗𝑇1 → 𝑈∗𝑇2 → 0 of
finitely generated projective 𝑉-modules. Hence we get a homomorphism of abelian
groups

𝑈∗ = 𝐿0 ( 𝑈 ) : 𝐿0 (𝑀) → 𝐿0 (𝑉), [𝑇] ↦→ [ 𝑈∗𝑇],(2.2)

which is also called the change of rings homomorphism. Thus𝐿0 becomes a covariant
functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group). One should
view 𝐿0 (𝑀) together with the assignment sending a finitely generated projec-
tive 𝑀-module 𝑇 to its class [𝑇] in 𝐿0 (𝑀) as the universal additive invariant
or the universal dimension function for finitely generated projective 𝑀-modules.
Namely, suppose that we are given an abelian group and an assignment 𝑋 that as-
sociates to a finitely generated projective 𝑀-module an element 𝑋 (𝑇) ≃ 𝑌 such that
𝑋 (𝑇0) + 𝑋 (𝑇2) = 𝑋 (𝑇1) holds for any exact sequence 0 → 𝑇0 → 𝑇1 → 𝑇2 → 0
of finitely generated projective 𝑀-modules. Then there is precisely one homomor-
phism of abelian groups 𝑍 : 𝐿0 (𝑀) → 𝑌 such that 𝑍( [𝑇]) = 𝑋 (𝑇) holds for every
finitely generated projective 𝑀-module 𝑇. The analogous statement holds for 𝑃0 (𝑀)
if we consider finitely generated 𝑀-modules instead of finitely generated projective
𝑀-modules.

A ring is an integral domain if every zero-divisor is trivial, i.e., if 𝑎, 𝑏 ≃ 𝑀 satisfy
𝑎𝑏 = 0, then 𝑎 = 0 or 𝑏 = 0. A principal ideal domain is a commutative integral
domain forwhich every ideal is a principal ideal, i.e., of the form (𝑎) = {𝑎 ⇐𝑎 | 𝑎 ⇐ ≃ 𝑀}
for some 𝑎 ≃ 𝑀.
Example 2.4 (𝐿0 (𝑀) and𝑃0 (𝑀) of a principal ideal domain). Let 𝑀 be a principal
ideal domain. Then we get isomorphisms of abelian groups

Z →→ 𝐿0 (𝑀), 𝑐 ↦→ [𝑀#];
𝐿0 (𝑀) →→ 𝑃0 (𝑀), [𝑇] ↦→ [𝑇] .
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This follows from the structure theorem of finitely generated 𝑀-modules over princi-
pal ideal domains. It implies that any finitely generated 𝑀-module 𝑊 can be written
as a direct sum 𝑀# ⇒ 𝑑 for some torsion 𝑀-module 𝑑 for which there exists an exact
sequence of 𝑀-modules of the shape 0 → 𝑀$ → 𝑀$ → 𝑑 → 0. Moreover, 𝑊 is
projective if and only if 𝑑 is trivial and we have 𝑀% = 𝑀# ⇐⇒ 𝑒 = 𝑐.

Definition 2.5 (Reduced projective class group 𝐿0 (𝑀)). Define the reduced pro-
jective class group 𝐿0 (𝑀) to be the quotient of 𝐿0 (𝑀) by the abelian subgroup
{[𝑀%] → [𝑀#] | 𝑐,𝑒 ≃ Z,𝑒, 𝑐 ≥ 0}, which is the same as the abelian subgroup
generated by the class [𝑀].

We conclude from Example 2.4 that the reduced projective class group 𝐿0 (𝑀) is
isomorphic to the cokernel of the homomorphism

𝑈∗ : 𝐿0 (Z) → 𝐿0 (𝑀)

where 𝑈 is the unique ring homomorphism Z → 𝑀, 𝑐 ↦→ 𝑐 · 1𝑀.
Remark 2.6 (The projective class group as a Grothendieck group). Let Proj(𝑀)
be the abelian semigroup of isomorphisms classes of finitely generated projective
𝑀-moduleswith the addition coming from the direct sum. Let𝐿 ⇐

0 (𝑀) be the associated
abelian group given by the Grothendieck construction applied to Proj(𝑀). There is a
natural homomorphism

𝑍 : 𝐿 ⇐
0 (𝑀) →→ 𝐿0 (𝑀)

sending the class of a finitely generated projective 𝑀-module 𝑇 in 𝐿 ⇐
0 (𝑀) to its class

in 𝐿0 (𝑀). This is a well-defined isomorphism of abelian groups.
The analogous definition of 𝑃⇐

0 (𝑀) and the construction of a homomorphism
𝑃⇐

0 (𝑀) → 𝑃0 (𝑀) makes sense, but the latter map is not bijective in general. It works
for 𝐿0 (𝑀) because every exact sequence of projective 𝑀-modules 0 → 𝑇0 → 𝑇1 →
𝑇2 → 0 splits and thus yields an isomorphism 𝑇1 𝑇0 ⇒ 𝑇2. In general 𝐿-theory
deals with exact sequences, not with direct sums. Therefore Definition 2.1 of 𝐿0 (𝑀)
reflects better the underlying idea of 𝐿-theory than its definition in terms of the
Grothendieck construction.

Exercise 2.7. Prove that the homomorphism 𝑍 : 𝐿 ⇐
0 (𝑀) → 𝐿0 (𝑀) appearing in

Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group measure?). Let 𝑇 be
a finitely generated projective 𝑀-module. Then we conclude from Remark 2.6 that
its class [𝑇] ≃ 𝐿0 (𝑀) is trivial if and only if 𝑇 is stably finitely generated free, i.e.,
𝑇 ⇒ 𝑀! 𝑀$ for appropriate integers 𝑎, 𝑏 ≥ 0. So the reduced projective class group
𝐿0 (𝑀)measures the deviation of a finitely generated projective 𝑀-module from being
stably finitely generated free. Note that, in general, stably finitely generated free does
not imply finitely generated free, as Examples 2.9 and 2.28 will show.

Example 2.9 (Dunwoody’s example). An interesting Z𝑃-module 𝑇 that is sta-
bly finitely generated free but not finitely generated free is constructed by Dun-
woody [317] for 𝑃 the torsionfree one-relator group 〈𝑓, 𝑔 | 𝑓2 = 𝑔3〉, which is the
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fundamental group of the trefoil knot. Note that 𝐿0 (Z𝑃) is known to be trivial, in
other words, every finitely generated projective 𝑀𝑃-module is stably finitely gener-
ated free. It is also worth mentioning that Z𝑃 contains no idempotent besides 0 and
1. Hence any direct summand in Z𝑃 is free.

More examples of this kind are given in Berridge-Dunwoody [134].

One basic feature of algebraic 𝐿-theory isMorita equivalence.

Theorem 2.10 (Morita equivalence for 𝐿0 (𝑀)). For every ring 𝑀 and integer
𝑐 ≥ 1, there is a natural isomorphism

7 : 𝐿0 (𝑀) →→ 𝐿0 (M# (𝑀)).

Proof. We can consider 𝑀# as an M# (𝑀)-𝑀-bimodule, denoted by M! (𝑀)𝑀
#
𝑀. Then

7 sends [𝑇] to [M! (𝑀)𝑀
#
𝑀 ⊗𝑀 𝑇]. We can also consider 𝑀# as an 𝑀-M# (𝑀)-

bimodule denoted by 𝑀𝑀#M! (𝑀) . Define 𝑖 : 𝐿0 (M# (𝑀)) → 𝐿0 (𝑀) by sending [𝑗]
to [𝑀𝑀#M! (𝑀) ⊗M! (𝑀) 𝑗]. Then 7 and 𝑖 are inverse to one another. /′

Exercise 2.11. Check that 7 and 𝑖 are inverse to one another.

We omit the easy proof of the next lemma.

Lemma 2.12. Let 𝑀0 and 𝑀1 be rings. Denote by pr𝑄 : 𝑀0 ∞ 𝑀1 → 𝑀𝑄 for 𝑘 = 0, 1 the
projection. Then we obtain an isomorphism

(pr0)∗ ∞ (pr1)∗ : 𝐿0 (𝑀0 ∞ 𝑀1) →→ 𝐿0 (𝑀0) ∞ 𝐿0 (𝑀1).

Example 2.13 (Rings with non-trivial 𝐿0 (𝑀)).We conclude from Example 2.4 and
Lemma 2.12 that for a principal ideal domain 𝑀 we have

𝐿0 (𝑀 ∞ 𝑀) Z ⇒ Z;
𝐿0 (𝑀 ∞ 𝑀) Z.

The 𝑀 ∞ 𝑀-module 𝑀 ∞ {0} is finitely generated projective but not stably finitely
generated free. It is a generator of the infinite cyclic group 𝐿0 (𝑀 ∞ 𝑀).

Notation 2.14 (M(𝑀), GL(𝑀), and Idem(𝑀)). Let M%,# (𝑀) be the set of (𝑒, 𝑐)-
matrices over 𝑀. For 𝑌 ≃ M%,# (𝑀), let 𝑎𝑅 : 𝑀% → 𝑀#, 𝑙 → 𝑙𝑌 be the
𝑀-homomorphism of (left) 𝑀-modules given by right multiplication by 𝑌. Let
M# (𝑀) be the ring of (𝑐, 𝑐)-matrices over 𝑀. Denote by GL# (𝑀) the group of
invertible (𝑐, 𝑐)-matrices over 𝑀. Let Idem# (𝑀) be the subset of M# (𝑀) of idem-
potent matrices 𝑌, i.e., (𝑐, 𝑐)-matrices satisfying 𝑌2 = 𝑌. There are embeddings

𝑘𝑆 ,# : M# (𝑀) → M#+1 (𝑀), 𝑌 ↦→ 𝑌 0
0 𝑚

for 𝑚 = 0, 1 and 𝑐 ≥ 1. The embedding

𝑘1,# induces an embedding GL# (𝑀) → GL#+1 (𝑀) of groups. Let GL(𝑀) be the
union of the GL# (𝑀)-s, which is a group again. Denote by M(𝑀) the union of the
M# (𝑀)-s with respect to the embeddings 𝑘0. This is a ring without unit. Let Idem(𝑀)
be the set of idempotent elements in 𝑊 (𝑀). This is the same as the union of the
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Idem# (𝑀)-s with respect to the embeddings Idem# (𝑀) → Idem#+1 (𝑀) coming from
the embeddings 𝑘0,# : M# (𝑀) → M#+1 (𝑀).

Remark 2.15 (The projective class groups in terms of idempotentmatrices).The
projective class groups 𝐿0 (𝑀) can also be defined in terms of idempotent matrices.
Namely, the conjugation action of GL# (𝑀) on M# (𝑀) induces an action of GL(𝑀)
on M(𝑀) which leaves Idem(𝑀) fixed. One obtains a bijection of sets

𝑍 : GL(𝑀)\ Idem(𝑀) → Proj(𝑀), [𝑌] ↦→ im (𝑎𝑅 : 𝑀# → 𝑀#) .

This becomes a bijection of abelian semigroups if we equip the source with the

addition coming from (𝑌, 𝑛) ↦→ 𝑌 0
0 𝑛 and the target with the one coming from

the direct sum. So we can identify 𝐿0 (𝑀) with the Grothendieck group associated to
the abelian semigroup GL(𝑀)\ Idem(𝑀) by Remark 2.6.

Exercise 2.16. Show that the map 𝑍 appearing in Remark 2.15 is a well-defined
isomorphism of abelian semigroups.

Example 2.17 (A ring 𝑀 with trivial 𝐿0 (𝑀)). Let 𝑆 be a field and let 𝑜 be an
𝑆-vector space with an infinite countable basis. Consider the ring 𝑀 = end) (𝑜).
Next we prove that 𝐿0 (𝑀) is trivial.

By Remark 2.15 it suffices to show for every integer 𝑐 ≥ 0 and two idempotent
matrices 𝑌, 𝑛 ≃ Idem# (𝑀) that the matrices 𝑌 ⇒ 0 ⇒ 1 and 𝑛 ⇒ 0 ⇒ 1 in M#+2 (𝑀)
are conjugate by an element in GL#+2 (𝑀). This follows from the observations that
both the kernel and the image of the 𝑆-linear endomorphisms 𝑎𝑅⇒0⇒1 and 𝑎*⇒0⇒1 of
𝑜#+2 have infinite countable dimension, two 𝑆-vector spaces of infinite countable
dimension are isomorphic, and the inclusions induce isomorphisms ker(𝑎𝑅⇒0⇒1) ⇒
im(𝑎𝑅⇒0⇒1) →→ 𝑜#+2, and ker(𝑎*⇒0⇒1) ⇒ im(𝑎*⇒0⇒1) →→ 𝑜#+2.

Lemma 2.18. Let 𝑃 be a group. Let 𝑀 be a commutative integral domain with
quotient field 𝑆. Then we obtain an isomorphism

𝐿0 (𝑀𝑃) →→ 𝐿0 (𝑀𝑃) ⇒ Z, [𝑇] ↦→ ( [𝑇], dim) (𝑆 ⊗𝑀𝑉 𝑇))

where 𝑆 is considered as an 𝑀𝑃-module with respect to the trivial 𝑃-action and the
inclusion of rings 𝑝 : 𝑀 → 𝑆.

Proof. Since 𝑆 ⊗𝑀𝑉 𝑇 is a finite-dimensional 𝑆-vector space for finitely generated
𝑇 and 𝑆 ⊗𝑀𝑉 (𝑇 ⇒ 𝑗) 𝑉 (𝑆 ⊗𝑀𝑉 𝑇) ⇒ (𝑆 ⊗𝑀𝑉 𝑗), this is a well-defined homo-
morphism. Bijectivity follows from dim) (𝑆 ⊗𝑀𝑉 𝑀𝑃#) = 𝑐. /′
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2.3 The Projective Class Group of a Dedekind Domain

Let 𝑀 be a commutative integral domain with quotient field 𝑆. A non-zero
𝑀-submodule 𝑞 ∈ 𝑆 is called a fractional ideal if for some 𝑎 ≃ 𝑀 we have 𝑎 𝑞 ⊆ 𝑀.
A fractional ideal 𝑞 is called principal if 𝑞 is of the form !,

𝑋 | 𝑎 ≃ 𝑀 for some
𝑓, 𝑔 ≃ 𝑀 with 𝑓, 𝑔 ≠ 0.

Definition 2.19 (Dedekind domain). A commutative integral domain 𝑀 is called a
Dedekind ring if for any fractional ideal 𝑞 there exists another fractional ideal 𝑟 with
𝑞𝑟 = 𝑀.

Note that in Definition 2.19 the fractional ideal 𝑟 must be given by {𝑙 ≃ 𝑆 |
𝑙 · 𝑞 ⊆ 𝑀}.

The fractional ideals in a Dedekind ring form by definition a group under multi-
plication of ideals with 𝑀 as unit. The principal fractional ideals form a subgroup.
The class group 𝑁 (𝑀) is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [727, Corollary 11 on
page 14] and [860, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class group of
Dedekind domains). Let 𝑀 be a Dedekind domain. Then every fractional ideal
is a finitely generated projective 𝑀-module and we obtain an isomorphism of abelian
groups

Z ⇒ 𝑁 (𝑀) →→ 𝐿0 (𝑀), (𝑐, [𝑞]) ↦→ 𝑐 · [𝑀] + [𝑞] → [𝑀] .
In particular, we get an isomorphism

𝑁 (𝑀) →→ 𝐿0 (𝑀), [𝑞] ↦→ [𝑞] .

A ring is called hereditary if every ideal is projective, or, equivalently, if ev-
ery submodule of a projective 𝑀-module is projective, see [215, Theorem 5.4 in
Chapter I.5 on page 14].

Theorem 2.21 (Characterization ofDedekinddomains). The following assertions
are equivalent for a commutative integral domain with quotient field 𝑆:

(i) 𝑀 is a Dedekind domain;
(ii) For every pair of ideals 𝑞 ⊆ 𝑟 of 𝑀, there exists an ideal 𝐿 ⊆ 𝑀 with 𝑞 = 𝑟𝐿;
(iii) 𝑀 is hereditary;
(iv) Every finitely generated torsionfree 𝑀-module is projective;
(v) 𝑀 is Noetherian and integrally closed in its quotient field 𝑆 and every non-zero

prime ideal is maximal.

Proof. This follows from [271, Proposition 4.3 on page 76 and Proposition 4.6 on
page 77] and the fact that a finitely generated torsionfree module over an integral
domain 𝑀 can be embedded into 𝑀# for some integer 𝑐 ≥ 0. See also [57, Chapter 13].

/′
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Remark 2.22 (The class group in terms of ideals of 𝑀). One calls two ideals 𝑞 and
𝑟 in 𝑀 equivalent if there exist non-zero elements 𝑎 and 𝑏 in 𝑀 with 𝑎 𝑞 = 𝑏𝑟. Then
𝑁 (𝑀) is the same as the equivalence classes of ideals under multiplication of ideals
and the class given by the principal ideals as unit. Two ideals 𝑞 and 𝑟 of 𝑀 define the
same element in 𝑁 (𝑀) if and only if they are isomorphic as 𝑀-modules, see [860,
Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of Q and the
ring of integers in 𝑆 is the integral closure of Z in 𝑆.

Theorem 2.23 (The class group of a ring of integers is finite). Let 𝑀 be the ring
of integers in an algebraic number field. Then 𝑀 is a Dedekind domain and its class
group 𝑁 (𝑀) and hence its reduced projective class group 𝐿0 (𝑀) are finite.

Proof. See [860, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23]. /′

Remark 2.24 (Class group of Z[exp(2𝑅𝑘/𝑠)]). Let 𝑠 be a prime number. The ring
of integers in the algebraic number field Q[exp(2𝑅𝑘/𝑠)] is Z[exp(2𝑅𝑘/𝑠)]. Its class
group𝑁 (Z[exp(2𝑅𝑘/𝑠)]) is finite by Theorem 2.23. However, its structure as a finite
abelian group is only known for finitely many small primes, see [727, Remark 3.4
on page 30] or [990, Tables §3 on page 352ff].

Example 2.25 (𝐿0 (Z[
√
→5])). The reduced projective class group 𝐿0 (Z[

√
→5]) of

the Dedekind domain Z[
√
→5] is cyclic of order two. A generator is given by the

maximal ideal (3, 2 +
√
→5) in Z[

√
→5]. (For more details see [860, Exercise 1.4.20

on page 25]).

2.4 Swan’s Theorem

Let 𝑆 be the field R or C. Let $ be a compact space. Denote by 𝑁 ($ , 𝑆) or briefly
by 𝑁 ($) the ring of continuous functions from $ to 𝑆. Let 𝑡 and 𝑢 be (finite-
dimensional locally trivial) 𝑆-vector bundles over $ . Denote by 𝑁 (𝑡) the 𝑆-vector
space of continuous sections of 𝑡. This becomes a 𝑁 ($)-module under pointwise
multiplication. If 𝑆 denotes the trivial 1-dimensional vector bundle $ ∞ 𝑆 → $ ,
then 𝑁 (𝑆) and 𝑁 ($) are isomorphic as 𝑁 ($)-modules. If 𝑡 and 𝑢 are isomorphic
as 𝑆-vector bundles, then 𝑁 (𝑡) and 𝑁 (𝑢) are isomorphic as 𝑁 ($)-modules. There
is an obvious isomorphism of 𝑁 ($)-modules

𝑁 (𝑡) ⇒ 𝑁 (𝑢) →→ 𝑁 (𝑡 ⇒ 𝑢).(2.26)

Since $ is compact, every 𝑆-vector bundle has a finite bundle atlas and admits
a Riemannian metric. This implies the existence of an 𝑆-vector bundle 𝑡⇐ such
that 𝑡 ⇒ 𝑡⇐ is isomorphic as an 𝑆-vector bundle to a trivial 𝑆-vector bundle 𝑆#.
Hence 𝑁 (𝑡) is a finitely generated projective 𝑁 ($)-module. Denote by hom(𝑡, 𝑢)
the 𝑁 ($)-module of morphisms of 𝑆-vector bundles from 𝑡 to 𝑢, i.e., of continuous
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maps between the total spaces that commutes with the bundle projections to $ and
induce linear (not necessarily injective or bijective) maps between the fibers over 𝑙
for all 𝑙 ≃ $ . This becomes a 𝑁 ($)-module under pointwise multiplication. Such
a morphism 𝑈 : 𝑡 → 𝑢 induces a 𝑁 ($)-homomorphism 𝑁 ( 𝑈 ) : 𝑁 (𝑡) → 𝑁 (𝑢) by
composition. The next result is due to Swan [939].

Theorem 2.27 (Swan’s Theorem). Let $ be a compact space and 𝑆 = R,C. Then:

(i) Let 𝑡 and 𝑢 be 𝑆-vector bundles. Then we obtain an isomorphism of 𝑁 ($)-
modules

(ii) We have 𝑡 𝑢 ⇐⇒ 𝑁 (𝑡) 𝑌 (𝑍) 𝑁 (𝑢);
(iii) If 𝑇 is a finitely generated projective𝑁 ($)-module, then there exists an 𝑆-vector

bundle 𝑡 satisfying 𝑁 (𝑡) 𝑌 (𝑍) 𝑇.

Γ(𝑡, 𝑢) : hom(𝑡, 𝑢) →→ hom𝑌 (𝑍) (𝑁 (𝑡),𝑁 (𝑢)), 𝑈 ↦→ 𝑁 ( 𝑈 );

Proof. (i) Obviously Γ(𝑡 ⇒ 𝑡⇐, 𝑢) can be identified with Γ(𝑡, 𝑢) ⇒ Γ(𝑡⇐, 𝑢) and
Γ(𝑡, 𝑢 ⇒ 𝑢⇐) can be identified with Γ(𝑡, 𝑢) ⇒Γ(𝑡, 𝑢⇐⇐) under the identification (2.26).
Since a direct sum of two maps is a bijection if and only if each of the maps is a
bijection and for every 𝑡 there is an 𝑡⇐ such that 𝑡 ⇒ 𝑡⇐ is trivial, it suffices to treat
the case where 𝑡 = 𝑆% and 𝑢 = 𝑆# for appropriate integers 𝑒, 𝑐 ≥ 0. There is an
obvious commutative diagram

hom(𝑆%, 𝑆#)
Γ ()" ,)! )

hom𝑌 (𝑍) (𝑁 (𝑆%),𝑁 (𝑆#))

M%,# (hom(𝑆, 𝑆))
M",! (Γ () ,) ) )

M%,# (𝑁 (𝑆)).

Hence it suffices to treat the claim for 𝑒 = 𝑐 = 1, which is obvious.
(ii) This follows from assertion (i).

(iii) Given a finitely generated projective 𝑁 ($)-module 𝑇, choose a 𝑁 ($)-map
𝑠 : 𝑁 ($)# → 𝑁 ($)# satisfying 𝑠2 = 𝑠 and im(𝑠) 𝑌 (𝑍) 𝑇. Because of assertion (ii)
we can choose a morphism of 𝑆-vector bundles E : 𝑆# → 𝑆# with Γ(𝑆#, 𝑆#) (E) =
𝑠. We conclude E2 = E from 𝑠2 = 𝑠 and the injectivity of Γ(𝑆#, 𝑆#). Elementary
bundle theory shows that the image of E and the image of 1 → E are 𝑆-subvector
bundles in 𝑆# satisfying im(E)⇒im(1→E) = 𝑆#. One easily checks𝑁 (im(E)) 𝑌 (𝑍)
𝑇. /′

One may summarize Theorem 2.27 by saying that we obtain an equivalence
of 𝑁 ($)-additive categories from the category of 𝑆-vector bundles over $ to the
category of finitely generated projective 𝑁 ($)-modules by sending 𝑡 to 𝑁 (𝑡).
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Example 2.28 (𝑁 (𝑑𝑉#)). Consider the 𝑐-dimensional sphere 𝑉#. Let 𝑑𝑉# be its
tangent bundle. Then 𝑁 (𝑑𝑉#) is a finitely generated projective 𝑁 (𝑉#)-module. It is
free if and only if 𝑑𝑉# is trivial. This is equivalent to the condition that 𝑐 = 1, 3, 7,
see [155]. On the other hand 𝑁 (𝑑𝑉#) is always stably finitely generated free as a
𝑁 (𝑉#)-module, since 𝑑𝑉# is stably finitely generated free as an 𝑆-vector bundle
because the direct sum of 𝑑𝑉# and the normal bundle 𝑖(𝑉#,R#+1) of the standard
embedding 𝑉# ⊆ R#+1 is 𝑑R#+1 |𝑎! and both 𝑆-vector bundles 𝑖(𝑉#,R#+1) and
𝑑R#+1 |𝑎! are trivial.

Exercise 2.29. Consider an integer 𝑐 ≥ 1. Show that there exists a 𝑁 (𝑉#)-module
𝑊 with 𝑁 (𝑑𝑉#) 𝑌 (𝑎! ) 𝑁 (𝑉#) ⇒ 𝑊 if and only if 𝑉# admits a nowhere vanishing
vector field. (This is equivalent to requiring that F(𝑉#) = 0, or, equivalently, that 𝑐
is odd.)

Remark 2.30 (Topological 𝐿-theory in dimension 0). Let $ be a compact space.
Let Vect) ($) be the abelian semigroup of isomorphism classes of 𝑆-vector bun-
dles over $ where the addition comes from the Whitney sum. Let 𝐿0 ($) be the
abelian group obtained from the Grothendieck construction to it. It is called the 0-th
topological 𝐿-group of $ . If 𝑈 : $ → 𝑥 is a map of compact spaces, the pullback
construction yields a homomorphism 𝐿0 ( 𝑈 ) : 𝐿0 (𝑥 ) → 𝐿0 ($). Thus we obtain a
contravariant functor 𝐿0 from the category of compact spaces to the category of
abelian groups. Since the pullback of a vector bundle with two homotopic maps
yields isomorphic vector bundles, 𝐿0 ( 𝑈 ) depends only on the homotopy class of
𝑈 . Actually there is a sequence of such homotopy invariant covariant functors 𝐿#
for 𝑐 ≃ Z that constitutes a generalized cohomology theory 𝐿∗ called topological
𝐿-theory. It is 2-periodic if 𝑆 = C, i.e., there are natural so-called Bott isomor-
phisms 𝐿# ($) →→ 𝐿#+2 ($) for 𝑐 ≃ Z. If 𝑆 = R, it is 8-periodic. We will give further
explanations and generalizations of topological 𝐿-theory later in Section 10.2

Swan’s Theorem 2.27 yields an identification

𝐿0 ($) 𝐿0 (𝑁 ($)) [𝑡] ↦→ [𝑁0 (𝑡)] .(2.31)

Exercise 2.32. Let 𝑈 : $ → 𝑥 be a map of compact spaces. Composition with 𝑈
yields a ring homomorphism 𝑁 ( 𝑈 ) : 𝑁 (𝑥 ) → 𝑁 ($). Show that under the identifica-
tion (2.31) the maps 𝐿0 ( 𝑈 ) : 𝐿0 (𝑥 ) → 𝐿0 ($) and𝑁 ( 𝑈 )∗ : 𝐿0 (𝑁 (𝑥 )) → 𝐿0 (𝑁 ($))
coincide.

Exercise 2.33. Compute 𝐿0 (𝑁 (H#)) for the 𝑐-dimensional disk H# for 𝑐 ≥ 0.

2.5 Wall’s Finiteness Obstruction
We now discuss the geometric relevance of 𝐿0 (Z𝑃).

Let $ be a 𝑁𝑄-complex. It is called finite if it consists of finitely many cells.
This is equivalent to the condition that $ is compact. We call $ finitely dominated
if there exists a finite domination (𝑥 , 𝑘, 𝑎), i.e., a finite 𝑁𝑄-complex 𝑥 together with
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maps 𝑘 : $ → 𝑥 and 𝑎 : 𝑥 → $ such that 𝑎 ◦ 𝑘 is homotopic to the identity on $ . If $
is finitely dominated, its set of path components 𝑅0 ($) is finite and the fundamental
group 𝑅1 (𝑁) of each component 𝑁 of $ is finitely presented, see Lemma 2.42.

While studying existence problems for compactmanifoldswith prescribed proper-
ties (like for example the existence of certain group actions), it happens occasionally
that it is relatively easy to construct a finitely dominated 𝑁𝑄-complex with the de-
sired property within a given homotopy type, whereas it is not at all clear whether one
can also find a homotopy equivalent finite 𝑁𝑄-complex. If the goal is to construct
a compact manifold, this is a necessary step in the construction. Wall’s finiteness
obstruction, which we will explain below, decides this question.

An example of such a geometric problem is the Spherical Space Form Prob-
lem 9.205, i.e., the classification of closed manifolds 𝑊 whose universal coverings
are diffeomorphic or homeomorphic to the standard sphere. Such examples arise
as unit spheres in unitary representations of finite groups, but there are also ex-
amples that do not occur in this way. This problem initiated not only the theory
of the finiteness obstruction, but also surgery theory for closed manifolds with
non-trivial fundamental group. We refer to the survey articles [284] and [694] for
more information about the Spherical Space Form problem. It was finally solved by
Madsen-Thomas-Wall [701, 702].

The finiteness obstruction also appears in the Ph.D.-thesis [915] of Siebenmann,
who dealt with the problem whether a given smooth or topological manifold can be
realized as the interior of a compact manifold with boundary.

Nextwe explain the definition and themain properties of the finiteness obstruction,
illustrating that it is a kind of Euler characteristic, but now counting elements in the
projective class group instead of counting ranks of finitely generated free modules.

2.5.1 Chain Complex Version of the Finiteness Obstruction

Definition 2.34 (Types of chain complexes). We call an 𝑀-chain complex finitely
generated, free, or projective respectively if each 𝑀-chain module is finitely gen-
erated, free, or projective. It is called positive if 𝑁# = 0 for 𝑐 ≤ →1. It is called
finite-dimensional if there exists a natural number I such that 𝑁# = 0 for |𝑐| ≤ I . It
is called finite if it is finite-dimensional and finitely generated.

For the remainder of this section all chain complexes𝑁∗ are understood to be pos-
itive. Let 𝑀 be a ring and 𝑁∗ be an 𝑀-chain complex. A finite domination (𝑆∗, 𝑘∗, 𝑠∗)
of𝑁∗ consists of a finite free 𝑀-chain complex 𝑆∗ and 𝑀-chain maps 𝑘∗ : 𝑁∗ → 𝑆∗ and
𝑎∗ : 𝑆∗ → 𝑁∗ such that 𝑎∗ ◦ 𝑘∗ 6 id𝑌∗ holds. The existence of a finite domination is
equivalent to the existence of a finite projective 𝑀-chain complex 𝑇∗ which is 𝑀-chain
homotopy equivalence to 𝑁∗. For a proof of this claim we refer for instance to [644,
Proposition 11.11 on page 222], or to the explicit construction in Subsection 23.7.5.
For any such choice of 𝑇∗, define the finiteness obstruction J(𝑁∗) ≃ 𝐿0 (𝑀) to be
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J(𝑁∗) :=

#≥0
(→1)# · [𝑇#] .(2.35)

The reduced finiteness obstruction J(𝑁∗) ≃ 𝐿0 (𝑀) is the image of J(𝑁∗) under
the projection 𝐿0 (𝑀) → 𝐿0 (𝑀). The definition is indeed independent of the choice
of 𝑇∗, since for two finite projective 𝑀-chain complexes 𝑇∗ and 𝑗∗ coming with
an 𝑀-chain homotopy equivalence 𝑈∗ : 𝑇∗

6→→ 𝑗∗ the mapping cone cone∗ ( 𝑈∗), see
Definition 3.29, is contractible and hence we obtain an 𝑀-isomorphism

𝑇odd ⇒ 𝑗ev →→ 𝑇ev ⇒ 𝑗odd

from the isomorphism (3.30) and its inverse (3.31).

Lemma 2.36. (i) If the two 𝑀-chain complexes 𝑁∗ and H∗ are 𝑀-chain homotopy
equivalent and one of them is finitely dominated, then both are finitely dominated
and we get

(ii) Let 0 → 𝑁∗ → H∗ → K∗ → 0 be an exact sequence of 𝑀-chain complexes. If
two of the 𝑀-chain complexes 𝑁∗, H∗, and K∗ are finitely dominated, then all
three are finitely dominated and we get

(iii) Let 𝑁∗ be a finitely dominated 𝑀-chain complex. Then it is 𝑀-chain homotopy
equivalent to a finite free 𝑀-chain complex if and only if J(𝑁∗) vanishes.

J(𝑁∗) = J(H∗);

J(H∗) = J(𝑁∗) + J(K∗);

(iProof. ) This follows directly from the definitions.
(ii) One can construct a commutative diagram of 𝑀-chain complexes

0 𝑁⇐
∗

6

H⇐
∗

6

K ⇐
∗

6

0

0 𝑁∗ H∗ K∗ 0

such that the rows are exact, the upper row consists of finite projective 𝑀-chain
complexes, and the vertical maps are 𝑀-chain homotopy equivalences, see for in-
stance [644, Lemma 11.6 on page 216].
(iii) Suppose that J(𝑁∗) = 0. Choose a finite projective 𝑀-chain complex 𝑇∗ which
is 𝑀-chain homotopy equivalent to 𝑁∗. An elementary 𝑀-chain complex K∗ over
an 𝑀-module 𝑊 is an 𝑀-chain complex which is concentrated in two consecutive
dimensions and its only non-trivial differential is given by id𝑏 : 𝑊 → 𝑊 . By adding
elementary 𝑀-chain complexes over finitely generated free 𝑀-modules, one can ar-
range that 𝑇∗ is of the shape · · · → 0 → 𝑇# → 𝑇#→1 → · · · → 𝑇0 such that 𝑇𝑄
is finitely generated free for 𝑘 ≤ 𝑐 → 1. Since J(𝑁∗) = (→1)# · [𝑇#] = 0 holds in
𝐿0 (𝑀), the 𝑀-module 𝑇# is stably free. Hence, by adding one further elementary
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chain complex over a finitely generated free 𝑀-module, one can arrange that 𝑇∗ is
finite free. /′

2.5.2 Space Version of the Finiteness Obstruction

In the sequel we ignore base point questions. This is not a real problem since an
inner automorphism of a group 𝑃 induces the identity on 𝐿0 (𝑀𝑃).

Given a finitely dominated connected𝑁𝑄-complex $ with fundamental group 𝑅,
we consider its universal covering $ and the associated cellular Z𝑅-chain complex
𝑁∗ ($). Given a finite domination (𝑥 , 𝑘, 𝑎), we regard the 𝑅-covering 𝑥 over 𝑥 asso-
ciated to the epimorphism 𝑎∗ : 𝑅1 (𝑥 ) → 𝑅1 ($). The pullback construction yields a
𝑅-covering 𝑘∗𝑥 over $ . Then 𝑆∗ = 𝑁∗ (𝑘∗𝑥 ) is a finite free Z𝑅-chain complex. The
maps 𝑘 and 𝑎 yield Z𝑅-chain maps 𝑎∗ : 𝑆∗ → 𝑁∗ ($) and 𝑘∗ : 𝑁∗ ($) → 𝑆∗ such that
𝑎∗ ◦ 𝑘∗ is Z𝑅-chain homotopic to the identity on 𝑁∗ ($). Thus (𝑆∗, 𝑘∗, 𝑎∗) is a finite
domination of the Z𝑅-chain complex 𝑁∗ ($). We have defined J(𝑁∗ ($)) ≃ 𝐿0 (Z𝑅)
in (2.35). Now define the unreduced finiteness obstruction

J($) := J(𝑁∗ ($)) ≃ 𝐿0 (Z𝑅).(2.37)

Define the finiteness obstruction

(2.38) J($) ≃ 𝐿0 (Z𝑅)

to be the image of J($) under the canonical projection 𝐿0 (Z𝑅) → 𝐿0 (Z𝑅). Obvi-
ously J($) = 0 if $ is homotopy equivalent to a finite 𝑁𝑄-complex L since in this
case we can take 𝑇∗ = 𝑁∗ (L) and 𝑁∗ (L) is a finite free Z𝑅-chain complex. The next
result is due to Wall, see [983] and [984].

Theorem 2.39 (Properties of the Finiteness Obstruction). Let $ be a finitely
dominated connected 𝑁𝑄-complex.
(i) The space $ is homotopy equivalent to a finite 𝑁𝑄-complex if and only if J($)

vanishes;
(ii) Every element in 𝐿0 (Z𝑃) can be realized as the finiteness obstruction J($) of

a finitely dominated connected 3-dimensional 𝑁𝑄-complex $ with 𝑃 = 𝑅1 ($),
provided that 𝑃 is finitely presented.

Theorem 2.39 illustrates why it is important to study the algebraic object 𝐿0 (Z𝑅)
when one is dealing with geometric or topological questions. The favorite case is
when 𝐿0 (Z𝑅) vanishes because then the finiteness obstruction is obviously zero and
one does not have to make a specific computation of J($) in 𝐿0 (Z𝑅).

Exercise 2.40. Let $ be a finitely dominated connected 𝑁𝑄-complex with funda-
mental group 𝑅. Define a homomorphism of abelian groups

M : 𝐿0 (Z𝑅) → Z, [𝑇] ↦→ dimQ (Q ⊗Z𝑐 𝑇).
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Show that M sends J($) to the Euler characteristic F($).

Remark 2.41. One can extend the finiteness obstruction also to not necessarily
connected 𝑁𝑄-complexes. If $ is a (not necessarily connected) finitely dominated
𝑁𝑄-complex, we define

𝐿0 (Z[𝑅1 ($)]) :=
𝑌≃𝑐0 (𝑍)

𝐿0 (Z[𝑅1 (𝑁)]);

𝐿0 (Z[𝑅1 ($)]) :=
𝑌≃𝑐0 (𝑍)

𝐿0 (Z[𝑅1 (𝑁)]),

and the unreduced finite obstruction and the finiteness obstruction to be

J($) := {J(𝑁) | 𝑁 ≃ 𝑅0 ($)} ≃ 𝐿0 (Z[𝑅1 ($)]);
J($) := {J(𝑁) | 𝑁 ≃ 𝑅0 ($)} ≃ 𝐿0 (Z[𝑅1 ($)]).

Note that𝐿0 (Z[𝑅1 ($)]) and𝐿0 (Z[𝑅1 ($)]) are covariant functors in $ in the obvious
way.

Formore information about the finiteness obstructionwe refer for instance to [380,
382, 642, 669, 740, 743, 761, 838, 965, 983, 984].

2.5.3 Outline of the Proof of the Obstruction Property

In this subsection we outline the proof of Theorem 2.39.
The elementary proofs of the next two lemmas can be found in [983, Lemma 1.3]

and [644, Lemma 14.8 on page 280].

Lemma 2.42. Let 𝑃 be a finitely presented group. Let 𝑘 : N → 𝑃 and 𝑎 : 𝑃 → N be
group homomorphisms with 𝑎 ◦ 𝑘 = id𝑑 . Then N is finitely presented.

Lemma 2.43. Let 𝑃 be a finitely generated group and N be a finitely presented
group. Then the kernel ker( 𝑈 ) of any group epimorphism 𝑈 : 𝑃 → N is finitely
generated as a normal subgroup, i.e., there exists a finite subset 𝑉 of ker( 𝑈 ) such
that the intersection of all normal subgroups of 𝑃 containing 𝑉 is ker( 𝑈 ).

The next Lemma 2.44 follows from Lemma 2.42 and Lemma 2.43.

Lemma 2.44. Let (𝑥 , 𝑘, 𝑎) be a finite domination of the𝑁𝑄-complex $ . Then we can
arrange by attaching finitely many 2-cells to 𝑥 that the map 𝑅1 (𝑎) : 𝑅1 (𝑥 ) → 𝑅1 ($)
is bijective and hence 𝑎 is 2-connected.

Lemma 2.45. Let𝑥 be a finitely dominated connected𝑁𝑄-complex whose finiteness
obstruction J(𝑥 ) vanishes. Then there are:
(i) A finite 2-dimensional connected 𝑁𝑄-complex L;
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(ii) A 2-connected map ℎ : L → 𝑥 ;
(iii) A finite free Z𝑅-chain complex 𝑁∗ with 𝑁∗ |2 = 𝑁∗ (L) and a Z𝑅-chain homotopy

equivalence 𝑈∗ : 𝑁∗ → 𝑁∗ (𝑥 ) with 𝑈∗ |2 = 𝑁∗ (ℎ), where here and in the sequel we
identify 𝑅 = 𝑅1 (L) with 𝑅1 (𝑥 ) using the isomorphism 𝑅1 (ℎ) : 𝑅1 (L) →→ 𝑅1 (𝑥 ).

Proof. By Lemma 2.44 we obtain a finite domination (𝑥 , 𝑘, 𝑎) such that 𝑎 : 𝑥 → $ is
2-connected. Take L to be the 2-skeleton 𝑥2 of 𝑥 and ℎ : L → $ to be the restriction
of 𝑎 to L .

Since ℎ is 2-connected, the induced Z𝑅-chain map 𝑁∗ (ℎ) : 𝑁∗ (L) → 𝑁∗ (𝑥 ) is
2-connected and hence N# (cone∗ (𝑁∗ (ℎ))) = 0 for 𝑐 ≤ 2. Let 𝑇∗ be the Z𝑅-subchain
complex of cone∗ (𝑁∗ (ℎ)) given by

. . .
45→→ cone4 (𝑁∗ (ℎ))

44→→ cone3 (𝑁∗ (ℎ))
43→→ ker(P2) → 0 → 0 → 0

where P∗ is the differential of cone(𝑁∗ (ℎ)). Because of the exact sequence

0 → ker(P2) → cone2 (𝑁∗ (ℎ))
42→→ cone1 (𝑁∗ (ℎ))

41→→ cone0 (𝑁∗ (ℎ)) → 0

the Z𝑅-chain complex 𝑇∗ is projective. The inclusion 𝑘∗ : 𝑇∗ → cone∗ (𝑁∗ (ℎ)) is
a homology equivalence of projective Z𝑅-chain complexes and hence a Z𝑅-chain
homotopy equivalence. Put 𝑗∗ = Σ→3𝑇∗. Then 𝑗∗ is a positive projective Z𝑅-chain
complex such that Σ3𝑗∗ is Z𝑅-chain homotopy equivalent to cone∗ (𝑁∗ (ℎ)).

The mapping cylinder cyl(𝑁∗ (ℎ)), see Definition 3.29, is Z𝑅-chain homotopy
equivalent to 𝑁∗ (𝑥 ) and there is an obvious short exact sequence of Z𝑅-chain com-
plexes

0 → 𝑁∗ (L) → cyl∗ (𝑁∗ (ℎ)) → cone(𝑁∗ (ℎ)) → 0.

Since 𝑁∗ (L) is finite free and 𝑁∗ (𝑥 ) is finitely dominated, we conclude from
Lemma 2.36 (i) and (ii) that 𝑗∗ is finitely dominated and that we get in 𝐿0 (Z𝑅)

J(𝑗∗) = →J(𝑇∗) = →J(cone∗ (𝑁∗ (ℎ))) = J(cyl∗ (𝑁∗ (ℎ))) → J(𝑁∗ (L))
= J(𝑁∗ (𝑥 )) → J(𝑁∗ (L)) = 0 → 0 = 0.

Lemma 2.36 (iii) implies that 𝑗∗ is Z𝑅-chain homotopy equivalent to a finite
free positive Z𝑅-chain complex 𝑆∗. Choose a Z𝑅-chain homotopy equivalence
Q∗ : Σ3𝑆∗ → cone∗ (𝑁∗ (ℎ)). We get a commutative diagram of Z𝑅-chain complexes
with exact rows and Z𝑅-chain homotopy equivalences as vertical arrows

0 𝑁∗ (L)

id

𝑁∗

𝑓⇐∗

Σ3𝑆∗

𝑓∗

0

0 𝑁∗ (L) cyl∗ (𝑁∗ (ℎ)) cone∗ (𝑁∗ (ℎ)) 0
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by requiring that the right square is a pull back. Now define the desired Z𝑅-chain map
𝑈∗ : 𝑁∗ → 𝑁∗ (𝑥 ) to be the composite of Q⇐∗ with the canonical Z𝑅-chain homotopy
equivalence cyl∗ (𝑁∗ (ℎ)) → 𝑁∗ (𝑥 ). /′

Next we present the main tool to pass from chain complexes to 𝑁𝑄-complexes.
Its proof can be found in [984, Theorem 2] or in the more general equivariant setting
in [644, Theorem 13.19 on page 268].

Theorem 2.46 (Realization Theorem). Let ℎ : L → 𝑥 be a map between connected
𝑁𝑄-complexes such that 𝑅1 (ℎ) : 𝑅1 (L) → 𝑅1 (𝑥 ) is an isomorphism. In the sequel
we identify 𝑅 = 𝑅1 (𝑥 ) with 𝑅1 (L) using 𝑅1 (ℎ). Put 𝑋 = dim(L) and suppose
2 ≤ 𝑋 < ↦. Assume the existence of a free Z𝑅-chain complex 𝑁∗ with a preferred
Z𝑅-basis and a Z𝑅-chain homotopy equivalence 𝑈∗ : 𝑁∗ → 𝑁∗ (𝑥 ) such that the
restriction 𝑁∗ |𝑔 to dimensions 0, 1, . . ., 𝑋 agrees with 𝑁∗ (L) and 𝑈∗ |𝑔 = 𝑁∗ (ℎ).

Then we can construct a 𝑁𝑄-complex $ such that its 𝑋-skeleton $𝑔 agrees with
L and a cellular homotopy equivalence Q : $ → L satisfying under the obvious
identification 𝑅 = 𝑅1 ($) = 𝑅1 (𝑥 ) = 𝑅1 (L):

(i) We have Q |7 = ℎ;
(ii) There is a Z𝑅-chain isomorphism R∗ : 𝑁 →→ 𝑁∗ ($) such that the given Z𝑅-basis

on is mapped bijectively to the cellular -basis of ;𝑁∗ Z𝑅 $
(iii) We have 𝑁∗ (Q) ◦ R∗ = 𝑈∗.

Remark 2.47. Note that there is no absolute version of the Realization Theorem 2.46
in the sense that, for a 𝑋-dimensional 𝑁𝑄-complex L with fundamental group 𝑅 and
dimension 𝑋 ≥ 2 and a based free Z𝑅-chain complex 𝑁∗ with 𝑁∗ |𝑔 = 𝑁∗ (L), we can
find a 𝑁𝑄-complex $ with $𝑔 = L and 𝑁∗ ($) = 𝑁∗. Moreover, the assumption
dim(L) ≥ 2 cannot be dropped in the Realization Theorem 2.46.

Lemma 2.48. Let $ be a connected 𝑁𝑄-complex. Then it is finitely dominated if
and only if 𝑅1 ($) is finitely presented and the Z[𝑅1 ($)]-chain complex 𝑁∗ ($) is
finitely dominated.

Proof. This follows essentially from Theorem 2.46; details of the proof can be
found in [984, Corollary 5.1] or in the more general equivariant setting in [644,
Proposition 14.6 (a) on page 282]. /′

Next we can give the proof of Theorem 2.39.

Proof of Theorem 2.39. (i) If the finitely dominated connected 𝑁𝑄-complex 𝑥 is
homotopy equivalent to a finite 𝑁𝑄-complex, we get J(𝑥 ) = 0 directly from the
definitions. Now suppose that𝑥 is a finitely dominated connected𝑁𝑄-complex with
J(𝑥 ) = 0. We conclude from Lemma 2.45 and Theorem 2.46 that 𝑥 is homotopy
equivalent to a 𝑁𝑄-complex $ for which its cellular Z𝑅-chain complex 𝑁∗ ($) is
finite free. The latter implies that $ is finite.
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(ii). Since 𝑃 is finitely presented, we can choose a connected finite 2-dimensional
𝑁𝑄-complex L with 𝑅1 (L) = 𝑃. Consider any element 𝑡 ≃ 𝐿0 (Z𝑅). Choose a
finitely generated projective 𝑀-module 𝑇 and a natural number 𝑐 such that 𝑡 =
[𝑇] → [Z𝑅#] holds. Choose an exact sequence 0 → 𝑖3

Z𝑅
𝑗→→ 𝑖2

Z𝑅 → 𝑇 → 0.
Now consider $ ⇐ = $ ∨ 𝑄2≃𝑖 𝑉

2. For each 𝑘3 ≃ 𝑞3 we attach a 3-cell to $ ⇐ with an
attaching map E𝑄3 : 𝑉2 → $ ⇐ such that [E𝑄3 ] ≃ 𝑅2 ($ ⇐) corresponds to the image of
the basis element in 𝑖3

Z𝑅 associated to 𝑘3 under the composite

𝑖3

Z𝑅
𝑗→→

𝑖2

Z𝑅
𝑘→→ 𝑅2 ($ ⇐)

where 𝑝 sends the basis element associated to 𝑘2 ≃ 𝑞2 to the element in 𝑅2 ($ ⇐)
given by the obvious inclusion of 𝑉2 → $ ⇐ associated to 𝑘2. Call the resulting
3-dimensional 𝑁𝑄-complex 𝑥 . Note that we can identify 𝑅 with 𝑅1 (𝑥 ). We obtain
an exact sequence of free Z𝑅-chain complexes

0 → 𝑁∗ ($) → 𝑁∗ (𝑥 ) → 𝑁∗ (𝑥 , $) → 0.

The Z𝑅-chain complex 𝑁∗ (𝑥 , $) is concentrated in dimensions 2 and 3 and its third
differential is R. This implies that 𝑁∗ (𝑥 , $) is Z𝑅-chain homotopy equivalent to the
Z𝑅-chain complex concentrated in dimension 2 with 𝑇 as second Z𝑅-chain module.
Hence 𝑁∗ (𝑥 , $) is finitely dominated and J(𝑁∗ (𝑥 , $)) = [𝑇] by Lemma 2.36 (i).
Lemma2.36 (ii) implies that𝑁∗ (𝑥 ) is finitely dominated. Then𝑥 is finitely dominated
as a 𝑁𝑄-complex by Lemma 2.48. Lemma 2.36 (ii) implies that we get for some
integer 𝑒

J(𝑁∗ (𝑥 )) = J(𝑁∗ (L)) + J(𝑁∗ (𝑥 , $)) = 𝑒 · [Z𝑅] + [𝑇] .

By attaching to𝑥 finitely many trivial 2 and 3-cells, we can arrange that𝑥 is a finitely
dominated connected 𝑁𝑄-complex with 𝑅1 (𝑥 ) = 𝑃 and J(𝑥 ) = [𝑇] → [Z𝑅#] =
𝑡. /′

Exercise 2.49. Let
$0

𝑄1

𝑄2
𝑘0

$1

𝑘1

$2 𝑘2
$

be a cellular pushout, i.e., the diagram is a pushout, the map 𝑘1 is an inclusion
of 𝑁𝑄-complexes, the map 𝑘2 is cellular and $ carries the induced 𝑁𝑄-structure.
Suppose that $0, $1, $2 are finitely dominated.

Then $ is finitely dominated and we get in 𝐿0 (Z[𝑅1 ($)])

J($) = ( 𝑝1)∗ (J($1)) + ( 𝑝2)∗ (J($2)) → ( 𝑝0)∗ (J($1)).
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2.6 Geometric Interpretation of Projective Class Group and
Finiteness Obstruction

Next we give a geometric construction of 𝐿0 (Z𝑅) that is in the spirit of the well-
known interpretation of the Whitehead group in terms of deformation retractions,
which we will present later in Section 3.4. The material of this section is taken
from [642], where more information and details of the proofs can be found.

Given a space 𝑥 , we want to define an abelian group Wa(𝑥 ). The underlying set
is the set of equivalence classes of an equivalence relation ∼ defined on the set of
maps 𝑈 : $ → 𝑥 with finitely dominated 𝑁𝑄-complexes as source and the given
space 𝑥 as target. We call 𝑈0 : $0 → 𝑥 and 𝑈4 : $4 → 𝑥 equivalent if there exists a
commutative diagram

$0
𝑄0

;0

$1
𝑘1

;1

$2

;2

$3
𝑘3

;3

$4
𝑄4

;4

𝑥

such that 𝑝1 and 𝑝3 are homotopy equivalences and 𝑘0 and 𝑘4 are inclusions of 𝑁𝑄-
complexes with the property that the larger one is obtained from the smaller one by
attaching finitely many cells. Obviously this relation is symmetric and reflexive. It
needs some work to show transitivity and hence that it is an equivalence relation.
The addition in Wa(𝑥 ) is given by the disjoint sum, i.e., define the sum of the class
of 𝑈0 : $0 → 𝑥 and 𝑈1 : $1 → 𝑥 to be the class of 𝑈0 𝑈1 : $0 $1 → 𝑥 . It is easy
to check that this is compatible with the equivalence relation. The neutral element is
represented by ∅ → 𝑥 . The inverse of the class [ 𝑈 ] of 𝑈 : $ → 𝑥 is constructed as
follows. Choose a finite domination (L , 𝑘, 𝑎) of $ . Construct a map 𝑆 : cyl(𝑘) → $
from the mapping cylinder of 𝑘 to 𝑥 such that 𝑆 |𝑍 = id𝑍 and 𝑆 |7 = 𝑎 . Then an
inverse of [ 𝑈 ] is given by the class [ 𝑈 ⇐] of the composite

𝑈 ⇐ : cyl(𝑘) ∅𝑍 cyl(𝑘)
)∅id#)→→→→→→→ $

;→→ 𝑥 .

This finishes the definition of the abelian group Wa(𝑥 ). A map 𝑈 : 𝑥0 → 𝑥1 induces
a homomorphism of abelian groups Wa( 𝑈 ) : Wa(𝑥0) → Wa(𝑥1) by composition.
Thus Wa defines a functor from the category of spaces to the category of abelian
groups.

Exercise 2.50. Show that [ 𝑈 ] + [ 𝑈 ⇐] = 0 holds for the composite 𝑈 ⇐ above.

Given a finitely dominated 𝑁𝑄-complex $ , define its geometric finiteness ob-
struction Jgeo ($) ≃ Wa($) by the class of id𝑍.
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Theorem 2.51 (The geometric finiteness obstruction). Let $ be a finitely domi-
nated 𝑁𝑄-complex. Then $ is homotopy equivalent to a finite 𝑁𝑄-complex if and
only if Jgeo ($) = 0 in Wa($).

Proof. Obviously Jgeo ($) = 0 if $ is homotopy equivalent to a finite 𝑁𝑄-complex.
Suppose Jgeo ($) = 0. Hence there are a 𝑁𝑄-complex 𝑥 , a map 𝑎 : 𝑥 → $ and a
homotopy equivalence ℎ : 𝑥 → L to a finite 𝑁𝑄-complex L such that 𝑥 is obtained
from X by attaching finitely many cells and 𝑎 ◦ 𝑘 = id𝑍 holds for the inclusion
𝑘 : $ → 𝑥 . The mapping cylinder cyl(𝑎) is built from the mapping cylinder cyl(𝑘)
by attaching a finite number of cells and is homotopy equivalent to $ . Choose a
homotopy equivalence Q : cyl(𝑘) → L . Consider the push-out

cyl(𝑘) 𝑄

𝑓

cyl(𝑎)
𝑓⇐

L
𝑄⇐

L ⇐

where 𝑘 is the inclusion. Since Q is a homotopy equivalence, the same is true for Q⇐.
Hence $ is homotopy equivalent to the finite 𝑁𝑄-complex L ⇐. /′

Theorem 2.52 (Identifying the finiteness obstruction with its geometric coun-
terpart). Let 𝑥 be a space. Then there is a natural isomorphism of abelian groups

Φ : Wa(𝑥 ) →→
𝑌≃𝑐0 (𝑚 )

𝐿0 (Z𝑅1 (𝑁)).

Proof. We only explain the definition of Φ. Consider an element [ 𝑈 ] ≃ Wa(𝑥 )
represented by a map 𝑈 : $ → 𝑥 from a finitely dominated 𝑁𝑄-complex $ to 𝑥 .
Given a path component𝑁 of $ , let𝑁 ; be the path component of𝑥 containing 𝑈 (𝑁).
The map 𝑈 induces a map 𝑈 |𝑌 : 𝑁 → 𝑁 ; and hence a map ( 𝑈 |𝑌 )∗ : 𝐿0 (Z𝑅1 (𝑁)) →
𝐿0 (Z𝑅1 (𝑁 ; )). Since $ is finitely dominated, every path component𝑁 of $ is finitely
dominated, and we can consider its finiteness obstruction J(𝑁) ≃ 𝐿0 (Z𝑅1 (𝑁)). Let
𝑍( [ 𝑈 ])𝑌 be the image of J(𝑁) under the composite

𝐿0 (Z𝑅1 (𝑁))
( ; |$ )∗→→→→→→ 𝐿0 (Z𝑅1 (𝑁 ; )) →

𝑌≃𝑐0 (𝑚 )
𝐿0 (Z𝑅1 (𝑁)).

Since 𝑅0 ($) is finite, we can define

𝑍( [ 𝑈 ]) :=
𝑌≃𝑐0 (𝑍)

𝑍( [ 𝑈 ])𝑌 .
∑

Weomit the easy proof that this is compatiblewith the equivalence relation appearing
in the definition of Wa(𝑥 ), that 𝑍 is a homomorphism of abelian groups and that
Theorem 2.39 implies that Φ is bijective. /′
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2.7 Universal Functorial Additive Invariants

In this section we describe the pair (𝐿0 (Z𝑅1 ($)), J($)) by an abstract property.

Definition 2.53 (Functorial additive invariant for finitely dominated 𝑁𝑄-comp-
lexes).A functorial additive invariant for finitely dominated𝑁𝑄-complexes consists
of a covariant functor 𝑌 from the category of finitely dominated 𝑁𝑄-complexes to
the category of abelian groups together with an assignment 𝑓 that associates to every
finitely dominated 𝑁𝑄-complex $ an element 𝑓($) ≃ 𝑌($) such that the following
axioms are satisfied:

• Homotopy invariance of 𝑌
If 𝑈 , Q : $ → 𝑥 are homotopic maps between finitely dominated 𝑁𝑄-complexes,
then 𝑌( 𝑈 ) = 𝑌(Q);

• Homotopy invariance of 𝑓($)
If 𝑈 : $ → 𝑥 is a homotopy equivalence of finitely dominated 𝑁𝑄-complexes,
then 𝑌( 𝑈 ) (𝑓($)) = 𝑓(𝑥 );

• Additivity
Let

$0
𝑄1

𝑄2
𝑘0

$1

𝑘1

$2 𝑘2
$

be a cellular pushout, i.e., the diagram is a pushout, the map 𝑘1 is an inclusion
of 𝑁𝑄-complexes, the map 𝑘2 is cellular and $ carries the induced 𝑁𝑄-structure.
Suppose that $0, $1, $2 are finitely dominated.

$Then is finitely dominated and

𝑓($) = 𝑌( 𝑝1) (𝑓($1)) + 𝑌( 𝑝2) (𝑓($2)) → 𝑌( 𝑝0) (𝑓($0));

• Normalization
𝑓(∅) = 0.

Example 2.54 (ComponentwiseEuler characteristic).Let 𝑌 be the covariant func-
tor sending a finitely dominated 𝑁𝑄-complex $ to N0 ($;Z) = 𝑌≃𝑐0 (𝑍) Z. Let
𝑓($) ≃ 𝑌($) be the componentwise Euler characteristic, i.e., the collection of inte-
gers {F(𝑁) | 𝑁 ≃ 𝑅0 ($)}. Then (𝑌, 𝑓) is a functorial additive invariant for finitely
dominated 𝑁𝑄-complexes.

Definition 2.55 (Universal functorial additive invariant for finitely dominated
𝑁𝑄-complexes). A universal functorial additive invariant for finitely dominated
𝑁𝑄-complexes (S, R) is a functorial additive invariant with the property that for
any functorial additive invariant (𝑌, 𝑓) there is precisely one natural transformation
𝑑 : S → 𝑌 with the property that 𝑑 ($) (R($)) = 𝑓($) holds for every finitely
dominated 𝑁𝑄-complex $ .
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Exercise 2.56. Show that the functorial additive invariant defined in Example 2.54
is the universal one if we restrict to finite 𝑁𝑄-complexes.

Obviously the universal additive functorial invariant is unique (up to unique
natural equivalence) if it exists. It is also easy to construct it. However, it turns out
that there exists a concrete model, namely, the following theorem is proved in [642,
Theorem 4.1].

Theorem 2.57 (The finiteness obstruction is the universal functorial additive
invariant). The covariant functor $ ↦→ 𝑌≃𝑐0 (𝑍) 𝐿0 (Z𝑅1 (𝑁)) together with the
componentwise finiteness obstruction {J(𝑁) | 𝑁 ≃ 𝑅0 ($)} is the universal functorial
additive invariant for finitely dominated 𝑁𝑄-complexes.
Exercise 2.58. (i) Construct for finitely dominated𝑁𝑄-complexes $ and𝑥 a natural

bilinear pairing
𝑇($ ,𝑥 ) : S ($) ∞S (𝑥 ) → S ($ ∞ 𝑥 )

sending (R($), R(𝑥 )) to R($∞𝑥 )where (S, R) is the universal functorial additive
invariant for finitely dominated 𝑁𝑄-complexes;

(ii) Let $ be a finitely dominated 𝑁𝑄-complex. Let 𝑥 be a finite 𝑁𝑄-complex such
that F(𝑁) = 0 for every component 𝑁 of 𝑥 . Show that $ ∞ 𝑥 is homotopy
equivalent to a finite 𝑁𝑄-complex.

2.8 Variants of the Farrell-Jones Conjecture for !0("#)

In this section we state variants of the Farrell-Jones Conjecture for 𝐿0 (𝑀𝑃), where
𝑀𝑃, sometimes also written as 𝑀[𝑃], is the group ring of a group𝑃 with coefficients
in an associative ring 𝑀 with unit. Elements in 𝑀𝑃 are given by formal finite sums
𝑓≃𝑉 𝑎𝑓 · Q, and addition and multiplication is given by

∑
𝑓≃𝑉

𝑎𝑓 · Q +
∑
𝑓≃𝑉

𝑏𝑓 · Q :=
∑
𝑓≃𝑉

(𝑎𝑓 + 𝑏𝑓) · Q;

𝑓≃𝑉
𝑎𝑓 · Q ·

𝑓≃𝑉
𝑏𝑓 · Q :=

∑
𝑓≃𝑉 𝑛,>≃𝑉,

𝑓=𝑛>

𝑎𝑛 · 𝑏> · Q.

The Farrell-Jones Conjecture itself will give a complete answer for arbitrary
groups and rings, but to formulate the full version some additional effort will be
needed. If one assumes that 𝑀 is regular and 𝑃 is torsionfree or that 𝑀 is regular and
Q ⊆ 𝑀, then the conjecture reduces to easy to formulate statements, which we will
present next. Moreover, these special cases are already very interesting.

Definition 2.59 (Projective resolution). Let 𝑊 be an 𝑀-module. A projective reso-
lution (𝑇∗, 𝑍) of 𝑊 is a positive projective 𝑀-chain complex 𝑇∗ with N# (𝑇∗) = 0 for
𝑐 ≥ 1 together with an 𝑀-isomorphism 𝑍 : N0 (𝑇∗) →→ 𝑊 . It is called finite, finitely
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generated, free, finite-dimensional, or 𝑋-dimensional if the 𝑀-chain complex 𝑇∗ has
this property.

A ring 𝑀 is Noetherian if any submodule of a finitely generated 𝑀-module is
again finitely generated. A ring 𝑀 is called regular if it is Noetherian and any finitely
generated 𝑀-module has a finite-dimensional projective resolution. Any principal
ideal domain such as Z, any field, and, more generally, any Dedekind domain is
regular, see Theorem 2.21.

Conjecture 2.60 (Farrell-Jones Conjecture for 𝐿0 (𝑀) for torsionfree𝑃 and reg-
ular 𝑀). Let 𝑃 be a torsionfree group and let 𝑀 be a regular ring. Then the map
induced by the inclusion of the trivial group into 𝑃

𝐿0 (𝑀) →→ 𝐿0 (𝑀𝑃)

is bijective.
In particular we get for any principal ideal domain 𝑀 and torsionfree 𝑃

𝐿0 (𝑀𝑃) = 0.

Remark 2.61 (Relevance of Conjecture 2.60). In view of Remark 2.8 Conjec-
ture 2.60 is equivalent to the statement that for a torsionfree group 𝑃 and a regular
ring 𝑀 every finitely generated projective 𝑀𝑃-module is stably finitely generated
free. This is the algebraic relevance of this conjecture. Its geometric meaning comes
from the following conclusion of Theorem 2.39. Namely, if 𝑀 = Z and𝑃 is a finitely
presented torsionfree group, it is equivalent to the statement that every finitely domi-
nated𝑁𝑄-complexwith 𝑅1 ($) 𝑃 is homotopy equivalent to a finite𝑁𝑄-complex.

Definition 2.62 (Family of subgroups). A family F of subgroups of a group 𝑃 is
a set of subgroups that is closed under conjugation with elements of 𝑃 and under
passing to subgroups.

Our main examples of families are listed below

Notation 2.63.
notation subgroups
TR trivial group
FCY finite cyclic subgroups
FIN finite subgroups
CYC cyclic subgroups
VCY virtually cyclic subgroups
ALL all subgroups

Definition 2.64 (Orbit category). The orbit category Or(𝑃) has as objects homo-
geneous spaces 𝑃/N and as morphisms 𝑃-maps. Given a family F of subgroups
of 𝑃, let the F -restricted orbit category OrF (𝑃) be the full subcategory of Or(𝑃)
whose objects are homogeneous spaces 𝑃/N with N ≃ F .
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Definition 2.65 (Subgroup category). The subgroup category Sub(𝑃) has as ob-
jects subgroups N of 𝑃. For N,𝐿 ⊆ 𝑃, let conhom𝑉 (N,𝐿) be the set of all group
homomorphisms 𝑈 : N → 𝐿 for which there exists a group element Q ≃ 𝑃 such that
𝑈 is given by conjugation with Q. The group of inner automorphisms inn(𝐿) consists
of those automorphisms 𝐿 → 𝐿 that are given by conjugation with an element
T ≃ 𝐿 . It acts on conhom(N,𝐿) from the left by composition. Define the set of
morphisms in Sub(𝑃) from N to 𝐿 to be inn(𝐿)\ conhom(N,𝐿). Composition of
group homomorphisms defines the composition of morphisms in Sub(𝑃).

Given a family F , define the F -restricted category of subgroups SubF (𝑃) to be
the full subcategory of Sub(𝑃) that is given by objects N belonging to F .

Exercise 2.66. Show that SubF (𝑃) is a quotient category of OrF (𝑃).
Note that there is a morphism from N to 𝐿 only if N is conjugate to a subgroup of

𝐿 . Clearly 𝐿0 (𝑀(→)) yields a functor from SubF (𝑃) to abelian groups since inner
automorphisms on a group 𝐿 induce the identity on 𝐿0 (𝑀𝐿). Using the inclusions
into 𝑃, one obtains a map

colim𝑑≃SubF (𝑉) 𝐿0 (𝑀N) → 𝐿0 (𝑀𝑃).

We briefly recall the notion of a colimit of a covariant functor 𝑆 : C → Z-MOD
from a small category C into the category of abelian groups, where small means
that the objects of C form a set. Given an abelian group 𝑌, let 𝑁𝑅 be the constant
functor C → Z-MOD that sends every object in C to 𝑌 and every morphism in C
to id𝑅. Given a homomorphism 𝑈 : 𝑌→ 𝑛 of abelian groups, let 𝑁 ; : 𝑁𝑅 → 𝑁* be
the obvious transformation. The colimit, sometimes also called the direct limit, of
𝑆 consists of an abelian group colimC 𝑆 together with a transformation 𝑑) : 𝑆 →
𝑁colimC ) such that for any abelian group 𝑛 and transformation 𝑑 : 𝑆 → 𝑁* there
exists precisely one homomorphism of abelian groups 𝑍 : colimC 𝑆 → 𝑛 satisfying
𝑁@ ◦ 𝑑) = 𝑑 . The colimit is unique (up to unique isomorphism) and always exists.
If we replace abelian group by ring or by 𝑀-module respectively, we get the notion
of a colimit, sometimes also called a direct limit, of functors from a small category
to rings or 𝑀-modules respectively.

Conjecture 2.67 (Farrell-Jones Conjecture for 𝐿0 (𝑀𝑃) for regular 𝑀 with
Q ⊆ 𝑀). Let 𝑀 be a regular ring with Q ⊆ 𝑀 and let 𝑃 be a group.

Then the homomorphism

𝑞FIN (𝑃, 𝑆) : colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑀N) → 𝐿0 (𝑀𝑃)(2.68)

coming from the various inclusions of finite subgroups of 𝑃 into 𝑃 is a bijection.

One can also ask for the following stronger version of Conjecture 2.67, which
also encompasses Conjecture 2.60.

Conjecture 2.69 (Farrell-Jones Conjecture for 𝐿0 (𝑀𝑃) for regular 𝑀). Let 𝑀 be
a regular ring and let 𝑃 be a group. Let P(𝑃, 𝑀) be the set of primes which are not
invertible in 𝑀 and for which 𝑃 contains an element of order 𝑠.
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Then the homomorphism

𝑞FIN (𝑃, 𝑆) : colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑀N) → 𝐿0 (𝑀𝑃)

coming from the various inclusions of finite subgroups of 𝑃 into 𝑃 is a P(𝑃, 𝑀)-
isomorphism, i.e., an isomorphism after inverting all primes in P(𝑃, 𝑀).

We mention that the surjectivity of the map 𝑞FIN (𝑃, 𝑆) is equivalent to the
surjectivity of the map induced by the various inclusions of subgroups N ≃ FIN
into 𝑃

𝑑≃FIN
𝐿0 (𝑀N) → 𝐿0 (𝑀𝑃),

because this map factorizes as

𝑑≃FIN
𝐿0 (𝑀N)

𝑟→→ colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑀N)
𝑖FIN (𝑉,) )→→→→→→→→→→ 𝐿0 (𝑀𝑃),

where the first map M is surjective.

Remark 2.70 (Module-theoretic relevance of Conjecture 2.67). Conjecture 2.67
implies that for a regular ring 𝑀 with Q ⊆ 𝑀 every finitely generated projective
𝑀-module is, up to adding finitely generated free 𝑀𝑃-modules, a direct sum of
finitely many 𝑀𝑃-modules of the shape 𝑀𝑃 ⊗𝑀𝑑 𝑇 for a finite subgroup N ⊆ 𝑃 and
a finitely generated projective 𝑀N-module 𝑇. So it predicts the (stable) structure of
finitely generated projective 𝑀𝑃-modules in the most elementary way. We mention,
however, that the situation is much more complicated in the case where we drop the
assumption that 𝑀 is regular and Q ⊆ 𝑀. In particular, for 𝑀 = Z new phenomena
will occur, as explained later, which are related to so-called negative 𝐿-groups
and Nil-groups. For instance, the obvious inclusion Z/6 → Z ∞ Z/6 does not
induce a surjection 𝐿0 (Z[Z/6]) → 𝐿0 (Z[Z ∞ Z/6]), since 𝐿0 (Z[Z/6]) = 0 and
𝐿0 (Z[Z ∞ Z/6]) Z, whereas by 𝐿0 (Q[Z/6]) → 𝐿0 (Q[Z ∞ Z/6]) is known to be
bijective as predicted by Conjecture 2.67.

Remark 2.71 (Conjecture 2.67 and theAtiyahConjecture).Conjecture 2.67 plays
a role in a program aiming at a proof of the Atiyah Conjecture about U2-Betti
numbers, as explained in [650, Section 10.2]. Atiyah defined the 𝑐-th U2-Betti number
of the universal covering 𝑊 of a closed Riemannian manifold 𝑊 to be the non-
negative real number

𝑔 (2)# (𝑊) := lim
𝑆→↦ F

tr e→𝑆Δ! (𝑠,𝑠 ) d𝑙
∫

where F is a fundamental domain for the 𝑅1 (𝑊)-action and e→𝑆Δ! (𝑠,𝑠 ) denotes the
heat kernel on 𝑊 . The version of the Atiyah Conjecture which we are interested in
and which is at the time of writing open says that 𝑋 · 𝑔 (2)# (𝑊) is an integer if 𝑋 is an
integer such that the order of any finite subgroup of 𝑅1 (𝑊) divides 𝑋. In particular
𝑔 (2)# (𝑊) is expected to be an integer if 𝑅1 (𝑊) is torsionfree. This gives an interesting
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connection between the analysis of heat kernels and the projective class group of
complex group rings C𝑃.

If one drops the condition that there exists a bound on the order of finite subgroups
of 𝑅1 (𝑊), then also transcendental real numbers can occur as the U2-Betti number
of the universal covering 𝑊 of a closed Riemannian manifold 𝑊 , see [58, 433, 809].

An 𝑀-module 𝑊 is called Artinian if for any descending series of submodules
𝑊1 ⊇ 𝑊2 ⊇ · · · there exists an integer T such that 𝑊> = 𝑊>+1 = 𝑊>+2 = · · ·
holds. An 𝑀-module 𝑊 is called simple or irreducible if 𝑊 ≠ {0} and 𝑊 contains
only {0} and 𝑊 as submodules. A ring 𝑀 is called Artinian if both 𝑀 considered
as a left 𝑀-module is Artinian and 𝑀 considered as a right 𝑀-module is Artinian,
or, equivalently, every finitely generated left 𝑀-module and every finitely generated
right 𝑀-module is Artinian. Skew-fields and finite rings are Artinian, whereas Z is
not Artinian.

Conjecture 2.72 (Farrell-Jones Conjecture for 𝐿0 (𝑀𝑃) for an Artinian ring 𝑀).
Let 𝑃 be a group and 𝑀 be an Artinian ring.
Then the canonical map

𝑞FIN (𝑃, 𝑀) : colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑀N) → 𝐿0 (𝑀𝑃)

is an isomorphism

2.9 Kaplansky’s Idempotent Conjecture

In this section we discuss the following conjecture.

Conjecture 2.73 (Kaplansky’s Idempotent Conjecture). Let 𝑀 be an integral
domain and let𝑃 be a torsionfree group. Then all idempotents of 𝑀𝑃 are trivial, i.e.,
equal to 0 or 1.

Remark 2.74 (Kaplansky’s Idempotent Conjecture for prime characteristic).
There is a reasonable more general version of Conjecture 2.73 where one replaces
the condition that 𝑃 is torsionfree by the weaker condition that any prime 𝑠 which
divides the order of some finite subgroup N ⊆ 𝑃 is not invertible in the integral
domain 𝑀. If 𝑀 is a skew-field of prime characteristic 𝑠, then this condition reduces
to the condition that any finite subgroup N of 𝑃 is a 𝑠-group.

The version ofKaplansky’s Idempotent Conjecture 2.73 described inRemark 2.74
is consistent with the observation that the only known idempotents in a group ring
𝑀𝑃 come from idempotents in 𝑀 or by the following construction.

Example 2.75 (Construction of idempotents). Let 𝑃 be a group and Q ≃ 𝑃 be
an element of finite order. Suppose that the order |Q | is invertible in 𝑀. Define an
element 𝑙 := |Q |→1 · |𝑓 |

𝑄=1 Q
𝑄 . Then 𝑙2 = 𝑙, i.e., 𝑙 is an idempotent in 𝑀𝑃.
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Exercise 2.76. Show that the version of Kaplansky’s Idempotent Conjecture of
Remark 2.74 holds for 𝑃 = Z/2.

Exercise 2.77. Consider the ring 𝑀 = Z[𝑙]/(2𝑙2 → 3𝑙 + 1). In the sequel denote by
R the class of R ≃ Z[𝑙] in 𝑀. Show:
(i) 2 is not invertible in 𝑀;
(ii) There are precisely two non-trivial idempotents in 𝑀, namely 2 → 2𝑙 and

→1 + 2𝑙;
(iii) The element 𝑙 + (1 → 𝑙) · 𝑚 is a non-trivial idempotent in 𝑀[Z/2].

Remark 2.78 (Sofic groups). In the next theorem we will use the notion of a sofic
group that was introduced by Gromov and originally called subamenable group.
Every residually amenable group is sofic but the converse is not true. The class of
sofic groups is closed under taking subgroups, direct products, amalgamated free
products, colimits and inverse limits, and, if N is a sofic normal subgroup of 𝑃
with amenable quotient 𝑃/N, then 𝑃 is sofic. To the authors’ knowledge there is
no example of a group that is not sofic. There is a note by Dave Witte Morris [752]
following Deligne [300] where a central extension 1 → Z → 𝑃 → 𝑉𝑇(2𝑐,R) → 1
is constructed such that 𝑃 is not residually finite. The group 𝑃 is viewed as a
candidate for a group which is not sofic. It is unknown but likely to be true that all
hyperbolic groups are sofic. For more information about the notion of a sofic group
we refer to [332].

Definition 2.79 (Directly finite). An 𝑀-module 𝑊 is called directly finite if every
𝑀-module I satisfying 𝑊 𝑀 𝑊 ⇒ I is trivial. A ring 𝑀 is called directly finite (or
von Neumann finite) if it is directly finite as a module over itself, or, equivalently, if
𝑎, 𝑏 ≃ 𝑀 satisfy 𝑎𝑏 = 1, then 𝑏𝑎 = 1. A ring is called stably finite if the matrix algebra
M# (𝑀) is directly finite for all 𝑐 ≥ 1.

Remark 2.80 (Stable finiteness). Stable finiteness for a ring 𝑀 is equivalent to the
following statement. Every finitely generated projective 𝑀-module 𝑇 whose class in
𝐿0 (𝑀) is zero is already the trivial module, i.e., 0 = [𝑇] ≃ 𝐿0 (𝑀) implies 𝑇 0.

If 𝑆 is a field of characteristic zero, then 𝑆𝑃 is stably finite for every group 𝑃.
This is proved by Kaplansky [544], see also Passman [791, Corollary 1.9 on page
38]. If 𝑀 is a skew-field and 𝑃 is a sofic group, then 𝑀𝑃 is stably finite. This is
proved for free-by-amenable groups by Ara-Meara-Perera [35] and extended to sofic
groups by Elek-Szabo [331, Corollary 4.7]. These results have been extended to
extensions with a finitely generated residually finite groups as kernel and a sofic
finitely generated group as quotient by Berlai [128].

The next theorem is taken from [88, Theorem 1.12].

Theorem 2.81 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent
Conjecture). Let 𝑃 be a group. Let 𝑀 be a ring whose idempotents are all triv-
ial. Suppose that

𝐿0 (𝑀) ⊗Z Q →→ 𝐿0 (𝑀𝑃) ⊗Z Q
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is an isomorphism.
Then 0 and 1 are the only idempotents in 𝑀𝑃 if one of the following conditions is

satisfied:

(i) 𝑀𝑃 is stably finite;
(ii) 𝑀 is a field of characteristic zero;
(iii) 𝑀 is a skew-field and 𝑃 is sofic.

Remark 2.82 (The Farrell-Jones Conjecture andKaplansky’s Idempotent Con-
jecture). Theorem 2.81 implies that for a skew-field H of characteristic zero and
a torsionfree group 𝑃 Kaplansky’s Idempotent Conjecture 2.73 is true for H𝑃,
provided that Conjecture 2.60 holds and that H is commutative or 𝑃 is sofic.

Remark 2.83 (The Farrell-Jones Conjecture and the Kaplansky’s Idempotent
Conjecture for prime characteristic). Suppose that H is a skew-field of prime
characteristic 𝑠, that Conjecture 2.72 holds for𝑃 and H, and that all finite subgroups
of 𝑃 are 𝑠-groups. Then 𝐿0 (H) →→ 𝐿0 (H𝑃) is an isomorphism since for a finite
𝑠-group N the group ring HN is a local ring, see [271, Theorem 5.24 on page 114],
and hence 𝐿0 (HN) = 0 by Lemma 2.123. If we furthermore assume that 𝑃 is sofic,
then Theorem 2.81 implies that all idempotents in H𝑃 are trivial.

Remark 2.84 (Reducing the case of a field of characteristic zero to C). Let 𝑆 be
a field of characteristic zero and let R = 𝑓≃𝑉 𝑙𝑓 · Q ≃ 𝑆𝑃 be an element. Let 𝐿 be
the finitely generated field extension of Q given by 𝐿 = Q(𝑙𝑓 | Q ≃ 𝑃) ∈ 𝑆. Then R
is already an element in 𝐿𝑃. The field 𝐿 embeds into C since 𝐿 is finitely generated,
it is a finite algebraic extension of a transcendental extension 𝐿 ⇐ of Q, see [617,
Theorem 1.1 on p. 356], and 𝐿 ⇐ has finite transcendence degree over Q. Since the
transcendence degree of C over Q is infinite, there exists an embedding 𝐿 ⇐ ↩→ C
induced by an injection of a transcendence basis of 𝐿 over Q into a transcendence
basis of C over Q. It extends to an embedding 𝐿 ↩→ C because C is algebraically
closed. Hence R can be viewed as an element in C𝑃. This reduces the case of fields
𝑆 of characteristic zero to the case 𝑆 = C.

Next we mention some further results.
Formanek [398, Theorem 9], see also [189, Proposition 4.2], has shown that

all idempotents of 𝑆𝑃 are trivial, provided that 𝑆 is a field of characteristic zero
and there are infinitely many primes 𝑠 for which there do not exist an element
Q ≃ 𝑃, Q ≠ 1 and an integer T ≥ 1 such that Q and Q𝑡% are conjugate. Torsionfree
hyperbolic groups satisfy these conditions. Hence Formanek’s results imply that
all idempotents in 𝑆𝑃 are trivial if 𝑃 is torsionfree hyperbolic and 𝑆 is a field of
characteristic zero.

Delzant [301] has proved the Kaplansky’s Idempotent Conjecture 2.73 for all
integral domains 𝑀 for a torsionfree hyperbolic group 𝑃, provided that 𝑃 admits an
appropriate action with large enough injectivity radius. Delzant actually deals with
zero-divisors and units as well.
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Remark 2.85 (Conjectures related to the Idempotent conjecture). There are also
the Zero-Divisor Conjecture due to Kaplansky, which predicts for an integral do-
main 𝑀 and a torsionfree group 𝑃 that 𝑀𝑃 has no non-trivial zero-divisors, and
the Embedding Conjecture due to Malcev, which predicts for an integral domain 𝑀
and a torsionfree group 𝑃 that 𝑀𝑃 can be emdedded into a skew-field. Obviously
the Embedding Conjecture implies the Zero-Divisor Conjecture, which in turn im-
plies the Idempotent Conjecture 2.73. The Zero-Divisor Conjecture does not follow
from Conjecture 2.60. For a ring 𝑀 with Q ⊆ 𝑀 = C the Zero-Divisor Conjecture
follows from the Atiyah Conjecture about the integrality of U2-Betti numbers for
torsionfree groups, see [650, Lemma 10.15 on page 376]. There is also the Unit-
Conjecture 3.125, which implies the Zero-Divisor Conjecture, see [610, (6.20) on
page 95], and is discussed in Section 3.14.

2.10 The Bass Conjectures

2.10.1 The Bass Conjecture for Fields of Characteristic Zero as Coefficients

Let𝑃 be a group. Let con(𝑃) be the set of conjugacy classes (Q) of elements Q ≃ 𝑃.
Denote by con(𝑃) ; the subset of con(𝑃) consisting of those conjugacy classes (Q)
for which each representative Q has finite order. Let 𝑀 be a commutative ring. Let
class(𝑃, 𝑀) and class(𝑃, 𝑀) ; be the free 𝑀-module with the set con(𝑃) and con(𝑃) ;
as basis. This is the same as the 𝑀-module of 𝑀-valued functions on con(𝑃) and
con(𝑃) ; with finite support. Define the universal 𝑀-trace

tr𝑗𝑀𝑉 : 𝑀𝑃 → class(𝑃, 𝑀),
𝑓≃𝑉

𝑎𝑓 · Q ↦→
𝑓≃𝑉

𝑎𝑓 · (Q).(2.86)
∑ ∑

It extends to a function tr𝑗𝑀𝑉 : M# (𝑀𝑃) → class(𝑃, 𝑀) on (𝑐, 𝑐)-matrices over 𝑀𝑃
by taking the sum of the traces of the diagonal entries. Let 𝑇 be a finitely generated
projective 𝑀𝑃-module. Choose a matrix 𝑌 ≃ M# (𝑀𝑃) such that 𝑌2 = 𝑌 and the
image of the 𝑀𝑃-map 𝑎𝑅 : 𝑀𝑃# → 𝑀𝑃# given by right multiplication with 𝑌 is
𝑀𝑃-isomorphic to 𝑇. Define the Hattori-Stallings rank of 𝑇 to be

HS𝑀𝑉 (𝑇) = tr𝑗𝑀𝑉 (𝑌) ≃ class(𝑃, 𝑀).(2.87)

The Hattori-Stallings rank depends only on the isomorphism class of the 𝑀𝑃-module
𝑇. It induces an 𝑀-homomorphism, the Hattori-Stallings homomorphism,

HS𝑀𝑉 : 𝐿0 (𝑀𝑃) ⊗Z 𝑀 → class(𝑃, 𝑀), [𝑇] ⊗ 𝑎 ↦→ 𝑎 · HS𝑀𝑉 (𝑇).(2.88)

Let 𝑆 be a field of characteristic zero. Fix an integer 𝑒 ≥ 1. Let 𝑆 (W%) ⊃ 𝑆 be
the Galois extension given by adjoining the primitive 𝑒-th root of unity W% to 𝑆.
Denote by Γ(𝑒, 𝑆) the Galois group of this extension of fields, i.e., the group of
automorphismsX : 𝑆 (W%) → 𝑆 (W%) that induce the identity on𝑆. It can be identified
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with a subgroup of Z/𝑒∗ by sendingX to the unique element R(X) ≃ Z/𝑒∗ for which
X(W%) = W𝑗(𝑢)

% holds. Let Q1 and Q2 be two elements of 𝑃 of finite order. We call
them 𝑆-conjugate if for some (and hence all) positive integers 𝑒 with Q%1 = Q%2 = 1
there exists an element X in the Galois group Γ(𝑒, 𝑆) with the property that Q𝑗(𝑢)

1
and Q2 are conjugate. Two elements Q1 and Q2 are 𝑆-conjugate for 𝑆 = Q, R, or C, if
the cyclic subgroups 〈Q1〉 and 〈Q2〉 are conjugate if Q1 and Q2, or Q1 and Q→12 , or Q1
and Q2 are conjugate, respectively.

Denote by con) (𝑃) ; the set of 𝑆-conjugacy classes (Q)) of elements Q ≃ 𝑃 of
finite order. Let class) (𝑃) ; be the 𝑆-vector space with the set con) (𝑃) ; as basis,
or, equivalently, the 𝑆-vector space of functions con) (𝑃) ; → 𝑆 with finite support.
There are obvious inclusions of 𝑆-modules

class) (𝑃) ; ⊆ class(𝑃, 𝑆) ; ⊆ class(𝑃, 𝑆).

Lemma 2.89. Suppose that 𝑆 is a field of characteristic zero and N is a finite group.
Then the Hattori-Stallings homomorphism, see (2.88), induces an isomorphism

HS)𝑑 : 𝐿0 (𝑆N) ⊗Z 𝑆 →→ class) (N) ; .

Proof. Since N is finite, an 𝑆N-module is a finitely generated projective 𝑆N-module
if and only if it is a (finite-dimensional) N-representation with coefficients in 𝑆 and
𝐿0 (𝑆N) is the same as the representation ring Rep) (N). The Hattori-Stallings rank
HS)𝑑 (𝑜) and the character FE of a 𝑃-representation 𝑜 with coefficients in 𝑆 are
related by the formula

FE (ℎ→1) = |𝑁𝑉 〈ℎ〉 | · HS)𝑑 (𝑜) (ℎ)(2.90)

for ℎ ≃ N where 𝑁𝑉 〈ℎ〉 is the centralizer of ℎ in 𝑃. Hence Lemma 2.89 follows
from representation theory, see for instance [908, Corollary 1 in Chapter 12 on
page 96]. /′

Exercise 2.91. Prove formula (2.90).

The following conjecture is the obvious generalization of Lemma 2.89 to infinite
groups.

Conjecture 2.92 (Bass Conjecture for fields of characteristic zero as coeffi-
cients). Let 𝑆 be a field of characteristic zero and let 𝑃 be a group. The Hattori-
Stallings homomorphism of (2.88) induces an isomorphism

HS)𝑉 : 𝐿0 (𝑆𝑃) ⊗Z 𝑆 → class) (𝑃) ; .
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Lemma 2.93. Suppose that 𝑆 is a field of characteristic zero and𝑃 is a group. Then
the composite

(2.94) colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑆N) ⊗Z 𝑆
𝑖FIN (𝑉,) )⊗Zid&→→→→→→→→→→→→→→→ 𝐿0 (𝑆𝑃) ⊗Z 𝑆

HS&'→→→→→→ class(𝑃, 𝑆)

is injective and has as image class) (𝑃) ; where 𝑞FIN (𝑃, 𝑆) is the map defined
in (2.68).

Proof. This follows from the commutative diagrambelow, compare [646, Lemma2.15
on page 220].

colim𝑑≃SubFIN (𝑉) 𝐿0 (𝑆N) ⊗Z 𝑆

colim(≃SubFIN (') HS&(

𝑖FIN (𝑉,) )⊗Zid&
𝐿0 (𝑆𝑃) ⊗Z 𝑆

HS&'

colim𝑑≃SubFIN (𝑉) class) (N) ;
𝑘

class) (𝑃) ; 𝑄 class(𝑃, 𝑆).

Here the isomorphism 𝑝 is the direct limit over the obvious maps class) (N) ; →
class) (𝑃) ; given by extending a class function in the trivial way and the map 𝑘 is
the natural inclusion and in particular injective. /′

Exercise 2.95. Let 𝑆 be a field of characteristic zero. Show that the group 𝑃 must
be torsionfree if 𝐿0 (𝑆𝑃) is a torsion group.

Theorem 2.96 (The Farrell-Jones Conjecture and the Bass Conjecture for fields
of characteristic zero). The Farrell-Jones Conjecture 2.67 for 𝐿0 (𝑀𝑃) for regular
𝑀 and Q ⊆ 𝑀 implies the Bass Conjecture 2.92 for fields of characteristic zero as
coefficients.

/′Proof. This follows from Lemma 2.93.

The Bost Conjecture 14.23 implies the Bass Conjecture 2.92 for fields of char-
acteristic zero as coefficients, provided that 𝑆 = C, see [131, Theorem 1.4 and
Lemma 1.5].

Exercise 2.97. Let 𝑆 be field of characteristic zero and let 𝑃 be a group. Suppose
that the Farrell-Jones Conjecture 2.67 for 𝐿0 (𝑀𝑃) for regular 𝑀 and Q ⊆ 𝑀 holds
for 𝑀 = 𝑆. Consider any finitely generated projective 𝑆𝑃-module 𝑇. Then the
Hattori-Stallings rank HS)𝑉 (𝑇) evaluated at the unit Y ≃ 𝑃 belongs to Q ⊆ 𝑆.

Remark 2.98 (Zalesskii’s Theorem).Zalesskii [1031], see also [189, Theorem3.1],
has shown for every field 𝑆, every group 𝑃, and every idempotent 𝑙 ≃ 𝑆𝑃 that
HS)𝑉 ((𝑙)) evaluated at the unit Y ≃ 𝑃 belongs to the prime field of 𝑆, where (𝑙) is
the finitely generated projective 𝑆𝑃-module given by the two-sided ideal (𝑙) ⊆ 𝑆𝑃
spanned by 𝑙.
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2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.99 (Bass Conjecture for integral domains as coefficients). Let 𝑀
be a commutative integral domain and let 𝑃 be a group. Let Q ≃ 𝑃 be an element in
𝑃. Suppose that either the order |Q | is infinite or that the order |Q | is finite and not
invertible in 𝑀.

Then for every finitely generated projective 𝑀𝑃-module 𝑇 the value of its Hattori-
Stallings rank HS𝑀𝑉 (𝑇) at (Q) is trivial.

Sometimes the Bass Conjecture 2.99 for integral domains as coefficients is called
the Strong Bass Conjecture, see [104, 4.5]. The Weak Bass Conjecture, see [104,
4.4], states for a finitely generated projective Z𝑃-module 𝑇 that the evaluation of its
Hattori-Stallings rank at the unit HSZ𝑉 (𝑇) (1) agrees with dimZ (Z⊗Z𝑉 𝑇). Note that
HSZ𝑉 (𝑇) (1) is the same as the von Neumann dimension dimN(𝑉) (N (𝑃)⊗Z𝑉 𝑇) for
a finitely generated projective Z𝑃-module 𝑇, see [650, Corollary 9.61 on page 362].

Exercise 2.100. Show that the Weak Bass Conjecture follows from the Bass Con-
jecture 2.99 for integral domains as coefficients.

The Bass Conjecture 2.99 can be interpreted topologically. Namely, the Bass
Conjecture 2.99 is true for a finitely presented group 𝑃 in the case 𝑀 = Z if and
only if every homotopy idempotent self-map of an oriented smooth closed manifold
whose dimension is greater than 2 and whose fundamental group is isomorphic
to 𝑃, is homotopic to one that has precisely one fixed point, see [132]. The Bass
Conjecture 2.99 for 𝑃 in the case 𝑀 = Z (or 𝑀 = C) also implies for a finitely
dominated 𝑁𝑄-complex with fundamental group 𝑃 that its Euler characteristic
agrees with the U2-Euler characteristic of its universal covering, see [327, 0.3].

The next results follows from the argument in [372, Section 5].

Theorem 2.101 (The Farrell-Jones Conjecture and the Bass Conjecture for
integral domains). Let 𝑃 be a group. Suppose that

𝑞 (𝑃, 𝑆) ⊗Z Q : colimOrFIN (𝑉) 𝐿0 (𝑆N) ⊗Z Q → 𝐿0 (𝑆𝑃) ⊗Z Q

is surjective for all fields 𝑆 of prime characteristic.
Then the Bass Conjecture 2.99 is satisfied for 𝑃 and every commutative integral

domain 𝑀.
In particular, the Bass Conjecture 2.99 follows from the Farrell-Jones Conjec-

ture 2.72.

For finite 𝑃 and 𝑀 an integral domain such that no prime dividing the order of
|𝑃 | is a unit in 𝑀, Conjecture 2.99 was proved by Swan [937, Theorem 8.1], see
also [104, Corollary 4.2]. The Bass Conjecture 2.99 has been proved by Bass [104,
Proposition 6.2 and Theorem 6.3] for 𝑀 = C and 𝑃 a torsionfree linear group and by
Eckmann [325, Theorem 3.3] for 𝑀 = Q, provided that𝑃 has at most cohomological
dimension 2 over Q.

The following result is due to Linnell [632, Lemma 4.1].
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Theorem 2.102 (The Bass Conjecture for integral domains and elements of
finite order). Let G be a group.

(i) Let 𝑠 be a prime, and let 𝑇 be a finitely generated projective Z(𝑡)𝑃-module.
Suppose for Q ≃ 𝑃 that HS(𝑇) (Q) ≠ 0. Then there exists an integer 𝑐 ≥ 1 such
that Q and Q𝑡! are conjugate in 𝑃 and we get for the Hattori-Stallings rank
HS(𝑇) (Q) = HS(𝑇) (Q𝑡! );

(ii) Let 𝑇 be a finitely generated projective Z𝑃-module. Suppose for Q ≃ 𝑃 that
Q ≠ 1 andHS(𝑇) (Q) ≠ 0. Then there exist subgroups𝑁,N of𝑃 such that Q ≃ 𝑁,
𝑁 ⊆ N, 𝑁 is isomorphic to the additive group Q, N is finitely generated, and the
elements of 𝑁 lie in finitely many N-conjugacy classes. In particular the order
of Q is infinite.

More information about the Bass Conjectures can be found in [103, 131, 133,
189, 234, 336, 337, 338, 546, 650, 788, 893, 894].

2.11 The Passage from the Integral to the Rational Group Ring

The following conjecture is taken from [673, Conjecture 85 on page 754].

Conjecture 2.103 (The rational 𝐿0 (Z𝑃)-to-𝐿0 (Q𝑃)-Conjecture). The change of
ring maps

Q ⊗Z 𝐿0 (Z𝑃) → Q ⊗Z 𝐿0 (Q𝑃)
is trivial.

If 𝑃 satisfies the Farrell-Jones Conjecture 2.67 for 𝐿0 (𝑀𝑃) for regular 𝑀 with
Q ⊆ 𝑀, then it satisfies the rational 𝐿0 (Z𝑃)-to-𝐿0 (Q𝑃)-Conjecture 2.103, see [673,
Proposition 87 on page 754].

Remark 2.104. The question whether an integral version of Conjecture 2.103 holds,
i.e., whether the change of ring maps

𝐿0 (Z𝑃) → 𝐿0 (Q𝑃)

is trivial, is discussed in [673, Remark 89 on page 756].
The answer is no in general. Counterexamples have been constructed by

Lehner [625], who actually carefully analyzes the image of the map 𝐿0 (Z𝑃) →
𝐿0 (Q𝑃). The group 𝑃 = 𝑗H32 ∗F16 𝑗H32 is a counterexample, where 𝑗H32 is the
quasi-dihedral group of order 32, and 𝑗16 is the generalized quaternion group of
order 16, see [625, Theorem 1.5].
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2.12 Survey on Computations of !0("#) for Finite Groups

In this section we give a brief survey about computations of 𝐿0 (𝑀𝑃) for finite groups
𝑃 and certain rings 𝑀. The upshot will be that the reduced projective class group
𝐿0 (Z𝑃) is a finite abelian group, but in most cases it is non-trivial and unknown, and
that for 𝑆 a field of characteristic zero 𝐿0 (𝑆𝑃) is a well-known finitely generated
free abelian group.

The following result is due to Swan [937, Theorem 8.1 and Proposition 9.1].

Theorem 2.105 (𝐿0 (𝑀𝑃) is finite for finite 𝑃 and 𝑀 the ring of integers in an
algebraic number field). Let 𝑃 be a finite group. Let 𝑀 be the ring of algebraic
integers in an algebraic number field, e.g., 𝑀 = Z. Then 𝐿0 (𝑀𝑃) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally proved
by Rim [852].

Theorem 2.106 (Rim’s Theorem). Let 𝑠 be a prime number. The homomorphism
induced by the ring homomorphism Z[Z/𝑠] → Z[exp(2𝑅𝑘/𝑠)] sending the genera-
tor of Z/𝑠 to the primitive 𝑠-th root of unity exp(2𝑅𝑘/𝑠)

𝐿0 (Z[Z/𝑠]) →→ 𝐿0 (Z[exp(2𝑅𝑘/𝑠)])

is a bijection.

Example 2.107 (𝐿0 (Z[Z/𝑠])). Let 𝑠 be a prime. We have already mentioned in
Remark 2.23 that Z[exp(2𝑅𝑘/𝑠)] is the ring of integers in the algebraic number field
Q[exp(2𝑅𝑘/𝑠)] and hence a Dedekind domain and that the structure of its ideal class
group𝑁 (Z[exp(2𝑅𝑘/𝑠)]) is only known for a few primes. Thus the message of Rim’s
Theorem 2.106 is that we know the structure of the finite abelian group 𝐿0 (Z[Z/𝑠])
only for a few primes. Here is a table taken from [727, page 30] or [990, Tables §3
on page 352ff].

𝑠 𝐿0 (Z[Z/𝑠])
≤ 19 {0}
23 Z/3
29 Z/2 ⇒ Z/2 ⇒ Z/2
31 Z/9
37 Z/37
41 Z/11 ⇒ Z/11
43 Z/211
47 Z/5 ⇒ Z/139

Remark 2.108 (Strategy to study 𝐿0 (Z𝑃) for finite𝑃).A Z-orderΛ is a Z-algebra
that is finitely generated projective over Z. Its locally free class group is defined as
the subgroup of 𝐿0 (Λ)

𝑁𝜁 (Λ) := [𝑇] → [𝑗] | 𝑇(𝑡) Λ()) 𝑗 (𝑡) for all primes 𝑠(2.109)
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where (𝑠) denotes localization at the prime 𝑠. This is the part of 𝐿0 (Λ) that can be
described by localization sequences. Its significance for Λ = Z𝑃 lies in the result
of Swan [937], see also Curtis-Reiner [271, Theorem 32.11 on page 676] and [272,
(49.12 on page 221], that 𝐿0 (Z𝑃) 𝑁𝜁 (Z𝑃) for every finite group 𝑃. Now fix a
maximal Z-order Z𝑃 ⊆ M ⊆ Q𝑃. Such a maximal order has better ring properties
than Z𝑃, namely, it is a hereditary ring. The map 𝑘∗ : 𝑁𝜁 (Z𝑃) → 𝑁𝜁 (M) induced
by the inclusion 𝑘 : Z𝑃 → M is surjective. Define

H (Z𝑃) = ker (𝑘∗ : 𝑁𝜁 (Z𝑃) → 𝑁𝜁 (M)) .(2.110)

The definition of H (Z𝑃) is known to be independent of the choice of the maximal
order M. Thus the study of 𝐿0 (Z𝑃) splits into the study of H (Z𝑃) and 𝑁𝜁 (M).
The analysis of 𝑁𝜁 (M) can be intractable and involves studying cyclotomic fields,
whereas the analysis of H (Z𝑃) essentially uses 𝑠-adic logarithms.

Remark 2.111 (Finiteness obstructions and H (Z𝑃)). Often calculations concern-
ing finiteness obstructions are done by first showing that its image in 𝑁𝜁 (M) =
𝐿0 (Z𝑃)/H (Z𝑃) is trivial, and then determining it in H (Z𝑃). For instance, Mis-
lin [739] proved that the finiteness obstruction for every finitely dominated homolog-
ically nilpotent space with the finite group 𝑃 as fundamental group lies in H (Z𝑃),
but that not every element in H (Z𝑃) occurs this way. Questions concerning the
Spherical Space Form Problem involve direct computations in H (Z𝑃), see for in-
stanceBentzen [122], Bentzen-Madsen [123], andMilgram [719]. The groupH (Z𝑃)
enters also in the work of Oliver on actions of finite groups on disks, see [771, 772].

For computations of H (Z𝑃) for finite 𝑠-groups we refer to Oliver [773, 774] and
Oliver-Taylor [777].

A survey on H (Z𝑃) and the methods of its computations can be found in
Oliver [775].

Theorem 2.112 (Vanishing results for H (Z𝑃)).
(i) Let 𝑃 be a finite abelian group 𝑃. Then H (Z𝑃) = 0 holds if and only if 𝑃

satisfies one of the conditions:

(a) 𝑃 has prime order;
(b) is cyclic of order , , , , , ;𝑃 4 6 8 9 10 14
(c) 𝑃 is Z/2 ∞ Z/2;

(ii) If 𝑃 is a finite group that is not abelian and satisfies H (Z𝑃) = 0, then it is H2#
for , 4, 5,or 4;𝑐 ≥ 3 𝑌 𝑌 𝑉

(iii) One has if is 4, 5 or 4;H (Z𝑃) = 0 𝑃 𝑌 𝑌 𝑉
(iv) H (ZH2#) = 0 for 𝑐 < 60 and H (ZH120) = Z/2;
(v) H (ZH2#) = 0 if 𝑐 satisfies one of the following conditions:

(a) 𝑐 is an odd prime;
(b) 𝑐 is a power of a regular odd prime;
(c) 𝑐 is a power of 2.



62 2 The Projective Class Group

(iProof. ) This is proved by Cassou-Nogues´ [218], see also [272, Theorem 50.16 on
page 253].

(ii) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266].

(iii) This follows from Reiner-Ulom [849], see also [272, Theorem 50.29 on
page 266].

(iv) This is proved in Endo-Miyata [340], see [272, Theorem 50.30 on page 266].

(v) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266]. /′

Theorem 2.113 (Finite groups with vanishing 𝐿0 (Z𝑃)).

(i) Let 𝑃 be a finite abelian group 𝑃. Then 𝐿0 (Z𝑃) = 0 holds if and only if 𝑃
satisfies one of the conditions:

(a) 𝑃 is cyclic of order 𝑐 for 1 ≤ 𝑐 ≤ 11;
(b) is cyclic of order , , , ;𝑃 13 14 17 19
(c) 𝑃 is Z/2 ∞ Z/2;

(ii) If 𝑃 is a non-abelian finite group with 𝐿0 (Z𝑃) = 0, then 𝑃 is H2# for 𝑐 ≥ 3
4, 5, or 4;

,
𝑌 𝑌 𝑉

(iii) We have 𝐿0 (Z𝑃) = 0 for 𝑃 = 𝑌4, 𝑉4,H6,H8,H12.

Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Corollary 50.17
on page 253].

(ii) This follows from Theorem 2.112 (ii).

(iii) The cases 𝑃 = 𝑌4, 𝑉4,H6,H8 are already treated in [848, Theorem 6.4 and
Theorem 8.2]. Because of Theorem 2.112 (iii) it suffices to show for the maximal
orderM for the groups𝑃 = 𝑌4, 𝑉4,H6,H8,H12 that𝑁𝜁 (M) = 0. This follows from
the fact that Q𝑃 is a products of matrix algebras over Q and hence the maximal
Z-orderM is a products of matrix rings over Z. /′

Exercise 2.114. Determine all finite groups 𝑃 of order ≤ 9 for which 𝐿0 (Z𝑃) is
non-trivial.

Theorem 2.115 (𝐿0 (𝑀𝑃) for finite 𝑃 and an Artinian ring 𝑀). Let 𝑀 be an
Artinian ring. Let 𝑃 be a finite group. Then 𝑀𝑃 is also an Artinian ring. There are
only finitely many isomorphism classes [𝑇1], [𝑇2], . . ., [𝑇#] of irreducible finitely
generated projective 𝑀𝑃-modules, and we obtain an isomorphism of abelian groups

Z# →→ 𝐿0 (𝑀𝑃), (T1, T2, . . . T#) ↦→
#∑
𝑄=1

T𝑄 · [𝑇𝑄] .

Proof. This follows from [271, Proposition 16.7 on page 406 and the paragraph after
Corollary 6.22 on page 132]. /′
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Let 𝑆 be a field of characteristic zero or of characteristic 𝑠 for a prime number
𝑠 not dividing |𝑃 |. Then 𝐿0 (𝑆𝑃) is the same as the representation ring Rep) (𝑃)
of 𝑃 with coefficients in the field 𝑆 since the ring 𝑆𝑃 is semisimple i.e., every
submodule of a module is a direct summand. If 𝑆 is a field of characteristic zero,
then representations are detected by their characters, see Lemma 2.89. For more
information about modules over 𝑆𝑃 for a finite group 𝑃 and a field 𝑆 we refer for
instance to Curtis-Reiner [271, Chapter 1 and Chapter 2] and Serre [908].

Exercise 2.116. Compute 𝐿0 (𝑆H8) for 𝑆 = Q, R and C.

2.13 Survey on Computations of !0($∗
% (#)) and !0(N(#))

Let 𝑃 be a group. Let B(U2 (𝑃)) denote the algebra of bounded linear operators
on the Hilbert space U2 (𝑃) whose orthonormal basis is 𝑃. The reduced group
𝑁∗-algebra 𝑁∗

! (𝑃) is the closure in the norm topology of the image of the reg-
ular representation C𝑃 → B(U2 (𝑃)) that sends an element R ≃ C𝑃 to the (left)
𝑃-equivariant bounded operator U2 (𝑃) → U2 (𝑃) given by right multiplication with
R→1. The group von Neumann algebra N(𝑃) is the closure in the weak topology.
There is an identification N(𝑃) = B(U2 (𝑃))𝑉 . One has natural inclusions

C𝑃 ⊆ 𝑁∗
! (𝑃) ⊆ N(𝑃) ⊆ B(U2 (𝑃)).

We have C𝑃 = 𝑁∗
! (𝑃) = N(𝑃) if and only if 𝑃 is finite. If 𝑃 = Z, then the

Fourier transform gives identifications 𝑁∗
! (Z) = 𝑁 (𝑉1) and N(Z) = U↦ (𝑉1).

Remark 2.117 (𝐿0 (𝑁∗
! (𝑃)) versus 𝐿0 (C𝑃)). We will later see that the study of

𝐿0 (𝑁∗
! (𝑃)) is not done according to its algebraic nature. Instead we will introduce

and analyze the topological 𝐿-theory of 𝑁∗
! (𝑃) and explain that in dimension 0

the algebraic and the topological 𝐿-theory of 𝑁∗
! (𝑃) agree. In order to explain

the different flavor of 𝐿0 (𝑁∗
! (𝑃)) in comparison with 𝐿0 (C𝑃), we mention the

conclusion of the Baum-Connes Conjecture for torsionfree groups 10.44 that for
torsionfree 𝑃 there exists an isomorphism

#≥0
N2# (𝑛𝑃;Q) →→ 𝐿0 (𝑁∗

! (𝑃)) ⊗Z Q.

The space 𝑛𝑃 is the classifying space of the group 𝑃, which is up to homotopy
characterized by the property that it is a 𝑁𝑄-complex with 𝑅1 (𝑛𝑃) 𝑃 whose
universal covering is contractible. We denote by N∗ ($ , 𝑀) the singular or cellular
homology of a space or 𝑁𝑄-complex $ with coefficient in a commutative ring 𝑀.
We can identify N∗ (𝑛𝑃; 𝑀) with the group homology of 𝑃 with coefficients in 𝑀.

We see that 𝐿0 (𝑁∗
! (𝑃)) can be huge also for torsionfree groups, whereas

𝐿0 (C𝑃) Z for torsionfree 𝑃 is a conclusion of the Farrell-Jones Conjecture 2.60
for 𝐿0 (𝑀) for torsionfree 𝑃 and regular 𝑀. We see already here a homological be-
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havior of 𝐿0 (𝑁∗
! (𝑃)), which is not yet evident in the case of group rings so far and

will become clear later.

Remark 2.118 (𝐿0 (N (𝑃))). The projective class group 𝐿0 (A) can be computed
for any von Neumann algebra A using the center-valued universal trace, see for
instance [650, Section 9.2]. In particular one gets for a finitely generated group 𝑃
that does not contain Z# as subgroup of finite index an isomorphism

𝐿0 (N (𝑃)) Z(N (𝑃))Z/2.

HereZ(N(𝑃)) is the center of the group von Neumann algebra and the Z/2-action
comes from taking the adjoint of an operator in B(U2 (𝑃)), see [650, Example 9.34
on page 353]. If 𝑃 is a finitely generated group that does not contain Z# as subgroup
of finite index and for which the conjugacy class (Q) of an element Q different from
the unit is always infinite, thenZ(N(𝑃)) = C and one obtains an isomorphism

𝐿0 (N (𝑃)) R.

A pleasant feature ofN(𝑃) is that there is no difference between stably isomorphic
and isomorphic in the sense that for three finitely generated projectiveN(𝑃)-modules
𝑇0, 𝑇1, and 𝑗 we have 𝑇0 ⇒ 𝑗 N(𝑉) 𝑇1 ⇒ 𝑗 if and only if 𝑇0 N(𝑉) 𝑇1.

We see that in the case of the group von Neumann algebra we can compute
𝐿0 (N (𝑃)) completely, but the answer does not show any homological behavior in
𝑃. In fact, the Farrell-Jones Conjecture and the Baum-Connes Conjecture have no
analog for group von Neumann algebras.

Exercise 2.119. Let 𝑃 be a torsionfree hyperbolic group that is not cyclic. Prove
𝐿0 (N (𝑃)) R.

Remark 2.120 (Change of rings homomorphisms for 𝐿0 for Z𝑃 → C𝑃 →
𝑁∗
! (𝑃) → N(𝑃)). We summarize what is conjectured or known about the string of

change of rings homomorphism

𝐿0 (Z𝑃)
𝑄1→→ 𝐿0 (C𝑃)

𝑄2→→ 𝐿0 (𝑁∗
! (𝑃))

𝑄3→→ 𝐿0 (N (𝑃))

coming from the various inclusion of rings. The first map 𝑘1 is conjectured to be
rationally trivial, see [673, Conjecture 85 on page 754], but is not integrally trivial,
see [625, Theorem 5.1]. The second map 𝑘2 is conjectured to be rationally injective,
compare [649, Theorem 0.5], but is not surjective in general. The map 𝑘3 is in general
not injective, not surjective, and not trivial. It is known that the composite 𝑘3 ◦ 𝑘2 ◦ 𝑘1
is trivial, see for instance [650, Theorem 9.62 on page 362]..
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2.14 Notes

Algebraic 𝐿-theory is compatible with direct limits, as explained for the projective
class group next. A directed set 𝑞 is a non-empty set with a partial ordering ≤ such
that for two elements 𝑘0 and 𝑘1 there exists an element 𝑘 with 𝑘0 ≤ 𝑘 and 𝑘1 ≤ 𝑘. A
directed system of rings is a set of rings {𝑀𝑄 | 𝑘 ≃ 𝑞} indexed by a directed set 𝑞
together with a choice of a ring homomorphism 𝑍𝑄, 𝑘 : 𝑀𝑄 → 𝑀 𝑘 for 𝑘, 𝑝 ≃ 𝑞 with 𝑘 ≤ 𝑝
such that 𝑍𝑄,> = 𝑍 𝑘 ,> ◦ 𝑍𝑄, 𝑘 holds for 𝑘, 𝑝 , T ≃ 𝑞 with 𝑘 ≤ 𝑝 ≤ T and 𝑍𝑄,𝑄 = id holds
for 𝑘 ≃ 𝑞. The colimit, sometimes also called the direct limit, of {𝑀𝑄 | 𝑘 ≃ 𝑞} is a ring
denoted by colim𝑄≃𝑖 𝑀𝑄 together with ring homomorphisms M 𝑘 : 𝑀 𝑘 → colim𝑄≃𝑖 𝑀𝑄
for every 𝑝 ≃ 𝑞 such that M 𝑘 ◦ 𝑍𝑄, 𝑘 = M𝑄 holds for 𝑘, 𝑝 ≃ 𝑞 with 𝑘 ≤ 𝑝 and the
following universal property is satisfied: For every ring 𝑉 and every system of ring
homomorphisms {7𝑄 : 𝑀𝑄 → 𝑉 | 𝑘 ≃ 𝑞} such that 7 𝑘 ◦𝑍𝑄, 𝑘 = 7𝑄 holds for 𝑘, 𝑝 ≃ 𝑞 with
𝑘 ≤ 𝑝 , there is precisely one ring homomorphism 7 : colim𝑄≃𝑖 𝑀𝑄 → 𝑉 satisfying
7 ◦ M𝑄 = 7𝑄 for every 𝑘 ≃ 𝑞. If we replace ring by group or module everywhere, we
get the notion of directed system and direct limit of groups or modules respectively.
This is a special case of the direct limit of a functor, namely, consider 𝑞 as category
with the set 𝑞 as objects and precisely one morphism from 𝑘 to 𝑝 if 𝑘 ≤ 𝑝 , and no
other morphisms.

Remark 2.121 (Filtered categories). One may consider instead of a directed set a
filtered category, i.e, a nonempty category 𝑞 such that for every two objects 𝑘 and
𝑝 there is an object T together with two morphisms 𝑘 → T and 𝑝 → T and for
two morphism 𝑈 , Q : 𝑘 → 𝑝 with the same source and target there is a morphism
ℎ : 𝑝 → T with ℎ 𝑝 ◦ 𝑈 = ℎ ◦ T , and all the results about colimits over directed
sets stay true if one considers colimits over filtered categories. Then one talks about
filtered systems instead of filtered sets.

Let {𝑀𝑄 | 𝑘 ≃ 𝑞} be a direct system of rings. For every 𝑘 ≃ 𝑞, we obtain a change of
rings homomorphism (M𝑄)∗ : 𝐿0 (𝑀𝑄) → 𝐿0 (𝑀). The universal property of the direct
limit yields a homomorphism

colim𝑄≃𝑖 (M𝑄)∗ : colim𝑄≃𝑖 𝐿0 (𝑀𝑄) →→ 𝐿0 (𝑀),(2.122)

which turns out to be an isomorphism, see [860, Theorem 1.2.5].
We denote by 𝑀∞ the group of units in 𝑀. A ring 𝑀 is called local if the set

𝑞 := 𝑀 → 𝑀∞ forms a (left) ideal. If 𝑞 is a left ideal, it is automatically a two-sided
ideal and it is maximal both as a left ideal and as a right ideal. A ring 𝑀 is local if and
only if it has a unique maximal left ideal and a unique maximal right ideal and these
two coincide. An example of a local ring is the ring of formal power series 𝑆 [[𝑚]]
with coefficients in a field 𝑆. If 𝑀 is a commutative ring and 𝑞 is a prime ideal, then
the localization 𝑀𝑖 of 𝑀 at 𝑞 is a local ring.

Theorem 2.123 (𝐿0 (𝑀) of local rings). Let 𝑀 be a local ring. Then every finitely
generated projective 𝑀-module is free and 𝐿0 (𝑀) is infinite cyclic with [𝑀] as
generator.
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Proof. See for instance [727, Lemma 1.2 on page 5] or [860, Theorem 1.3.11 on
page 14]. /′

The proof is based on Nakayama’s Lemma, which says for a ring 𝑀 and a finitely
generated 𝑀-module 𝑊 that rad(𝑀)𝑊 = 𝑊 ⇐⇒ 𝑊 = 0 holds. Here rad(𝑀) is the
radical, or Jacobson radical, i.e., the two-sided ideal that is given by the intersection
of all maximal left ideals, or, equivalently, of all maximal right ideals of 𝑀. The
radical is the same as the set of elements 𝑎 ≃ 𝑀 for which there exists an 𝑏 ≃ 𝑉 such
that 1 → 𝑎𝑏 has a left inverse in 𝑀.

If 𝑀 is a commutative ring and 𝑏𝑠YP(𝑀) is its spectrum consisting of its prime
ideals and equipped with the Zariski topology, then we obtain for every finitely
generated projective 𝑀-module 𝑇 a continuous rank function Spec(𝑀) → Z by
sending a prime ideal 𝑞 to the rank of the finitely generated free 𝑀𝑖 -module 𝑇𝑖 =
𝑇 ⊗𝑀 𝑀𝑖 . This makes sense because of Theorem 2.123 since 𝑀𝑖 is local. If 𝑀 is a
commutative integral domain, this rank function is constant. For more details we
refer for instance to [860, Proposition 1.3.12 on page 15].

Exercise 2.124. Prove for an integer 𝑐 ≥ 1 that 𝐿0 (Z/𝑐) is the free abelian group
whose rank is the number of prime numbers dividing 𝑐.

A ring is called semilocal if 𝑀/rad(𝑀) is Artinian, or, equivalently, 𝑀/rad(𝑀) is
semisimple. If 𝑀 is commutative, then 𝑀 is semilocal if and only if it has only finitely
many maximal ideas, see [916, page 69]. For a semilocal ring 𝑀, the projective class
group 𝐿0 (𝑀) is a finitely generated free abelian group, see [916, Proposition 14 on
page 28]. More information about semilocal rings can be found for instance in [610,
§ 20].

Lemma 2.125. For any ring 𝑀 and nilpotent two-sided ideal 𝑞 ⊆ 𝑀, the map
𝐿0 (𝑀) → 𝐿0 (𝑀/𝑞) induced by the projection 𝑀 → 𝑀/𝑞 is bijective.

Proof. See [998, Lemma 2.2 in Section II.2 on page 70]. /′

Given two groups𝑃1 and𝑃2, let𝑃1 ∗𝑃2 by the amalgamated free product. Then
the natural maps 𝑃> → 𝑃0 ∗ 𝑃1 for T = 1, 2 induce an isomorphism, see [421,
Theorem 1.1],

𝐿0 (Z[𝑃1]) ⇒ 𝐿0 (Z[𝑃1]) 𝐿0 (Z[𝑃1 ∗ 𝑃2]).(2.126)

This is a first glimpse of a homological behavior of 𝐿0 if one compares this with the
corresponding isomorphism of group homology

N# (𝑃1) ⇒ N# (𝑃1) N# (𝑃1 ∗ 𝑃2).

Exercise 2.127. Show that the projections pr> : 𝑃1 ∞ 𝑃2 → 𝑃> for T = 1, 2 do not
in general induce isomorphisms

𝐿0 (Z[𝑃1 ∞ 𝑃2]) → 𝐿0 (Z[𝑃1]) ∞ 𝐿0 (Z[𝑃2]).



672.14 Notes

There are also equivariant versions of the finiteness obstructions, see for in-
stance [32], [642], and [644, Chapter 3 and 11]. Finiteness obstructions for categories
are investigated in [391, 390].

Andrej Jaikin-Zapirain pointed out that he and Pablo Sánchez-Peralta have proved
the following result confirming Conjecture 2.60 in a special case.

A presentation 𝑃 = 〈$ | 𝑀〉 is called a Cohen–Lyndon presentation if for each
𝑎 ≃ 𝑀, there exists a transversal 𝑑! of the normal subgroup I = 〈〈𝑀〉〉, such that I
is freely generated by the set {𝑎𝑓 | 𝑎 ≃ 𝑀, Q ≃ 𝑑! }.

They prove that if 𝑃 has a Cohen-Lyndon presentation and 𝑉 is a regular ring,
then the natural map

𝐿0 (𝑉) → 𝐿0 (𝑉[𝑃])
is an isomorphism.


